
Thesis for The Degree of Licentiate of Engineering

Securing So�ware in the
Presence of Third-Party

Modules

Mohammad M. Ahmadpanah

Division of Computing Science, Information Security
Department of Computer Science & Engineering

Chalmers University of Technology
Gothenburg, Sweden, 2021



Securing Software in the Presence of Third-Party Modules

Mohammad M. Ahmadpanah

Copyright ©2021 Mohammad M. Ahmadpanah
except where otherwise stated.
All rights reserved.

ISSN 1652-876X
Department of Computer Science & Engineering
Division of Computing Science, Information Security
Chalmers University of Technology
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2021.

ii



Abstract

Modular programming is a key concept in software development where
the program consists of code modules that are designed and implemented
independently. This approach accelerates the development process and en-
hances scalability of the �nal product. Modules, however, are often written
by third parties, aggravating security concerns such as stealing con�dential
information, tampering with sensitive data, and executing malicious code.

Trigger-Action Platforms (TAPs) are concrete examples of employing
modular programming. Any user can develop TAP applications by connect-
ing trigger and action services, and publish them on public repositories. In
the presence of malicious application makers, users cannot trust applications
written by third parties, which can threaten users’ and platform’s security.

We present SandTrap, a novel runtime monitor for JavaScript that can
be used to securely integrate third-party applications. SandTrap enforces
�ne-grained access control policies at the levels of module, API, value, and
context. We instantiate SandTrap to IFTTT, Zapier, and Node-RED, three
popular JavaScript-driven TAPs, and illustrate how it enforces various poli-
cies on a set of benchmarks while incurring a tolerable runtime overhead.
We also prove soundness and transparency of the monitoring framework on
an essential model of Node-RED.

Furthermore, nontransitive policies have been recently introduced as a
natural �t for coarse-grained information-�ow control where labels are spec-
i�ed at the level of modules. The �ow relation does not need to be transitive,
resulting in nonstandard noninterference and enforcement mechanism. We
develop a lattice encoding to prove that nontransitive policies can be reduced
to classical transitive policies. We also devise a lightweight program trans-
formation that leverages standard �ow-sensitive information-�ow analyses
to enforce nontransitive policies more permissively.

Keywords: Third-Party Modules, Trigger-Action Platforms, JavaScript Run-
time Monitor, Nontransitive Noninterference, Information-Flow Control
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Introduction

In software development process, designers always aim at breaking the
complexity of the program into smaller building blocks to be able to provide
and track the progress of individual features speci�ed in the requirements.
This enables developers to implement each block separately and leverage the
existing ones if possible, which accelerates the development process, lowers
the costs of maintenance, and improves scalability of the program.

Modular programming [19] focuses on logically splitting the function-
ality of a program into independent yet reusable modules interacting via
well-de�ned interfaces. An interface, or API, is a gate to communicate with
the module o�ering a speci�c functionality that can be used in parts of a
program. Developers can easily load modules and invoke their APIs with de-
sired values in the program. They can also interchange the modules if needed
through the development process. Consider a module including a collection
of functions to provide network capabilities. Due to the complex nature of
network functionalities, the module should be independent of the rest of the
program, enabling usage of the module for other applications as well.

As a principle, the complexity of any module should be hidden in the
sense that the APIs, along with their documentation, are supposed to be
su�cient to realize how to interact with the code. It means that the client
program only needs to feed input arguments and handle outputs, without
knowing the implementation details.

Modules can be also written in a di�erent language at the core and
wrapped to be operable in the developer’s language; e.g., sqlite3 [13] for
interaction with sqlite database, bcrypt [2] for hashing passwords, and
microtime [8] for getting the time in microseconds, are Node.js modules
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Introduction

mainly written in C++.

Third-party modules

A third-party module is any piece of code, as a unit, written by a third party
(i.e., not the program developer) that can be included in the program to add
new functionality. Third-party modules typically are distributed and avail-
able in application-level package managers like npm [28], Yarn [14], pip [9],
and Maven [6], which are public repositories for downloading program de-
pendencies.

Even though modular programming has signi�cant bene�ts in software
development, it poses challenges for security when the code for modules and
their APIs is unavailable, written in a di�erent language, or di�cult to un-
derstand. Naturally, program’s security depends on security of the employed
modules and how they are applied in the program. Malicious modules (or
APIs) and misusing sensitive APIs are the main root causes of vulnerabilities
in the programs [36]. Since modules are mostly written by third parties, the
concerns get exacerbated more severely.

The security concerns can be divided into three main categories: con�-
dentiality, integrity, and availability. A malicious module can ex�ltrate pri-
vate data from unsuspecting users (an example of threats to con�dentiality),
alter a sensitive message (an example of integrity violation), and make some
undesired delays for the user’s application (an example of threats to avail-
ability).

Language-based security

Given that the main focus is on application-level policies and mechanisms,
we have chosen language-based approach to security (LBS) [25, 31, 33]. LBS
is a set of techniques for enhancing application security using programming
language properties, detecting and preventing vulnerabilities at the language
level, not in lower levels such as operating system. An LBS technique consists
of (1) a system model (i.e., programming language semantics), (2) a threat
model, (3) an enforcement mechanism (e.g., type system and runtime moni-
tor), and (4) the proof for establishing soundness guarantees of the proposed
enforcement mechanism.

The assumed system in this thesis is programs using third-party modules
and the threat model is malicious module (or application) makers attacking
con�dentiality and integrity of user’s data. In this model, an attacker can
develop a third-party module and publish it on public software repositories
such as package managers. Program developers and users who require the
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functionality described in the module speci�cation might deploy the mali-
cious module, and therefore, the malicious code can be triggered in program
executions, violating policies de�ned in the system. In another scenario, the
attacker may be a legitimate user in the same system running a malicious
application that calls a malicious API to modify a shared context, in concur-
rent with an unsuspecting user’s benign program. Lack of proper isolation
between applications can be exploited by the attacker and take the innocent
user into trouble.

Trigger-action platforms

A concrete example of employing modular programming is Trigger-Action
Platform (TAP) applications. A TAP links a wide range of otherwise uncon-
nected services and devices, such as IoT and smart devices, social network,
healthcare, and cloud services. IFTTT [4], Zapier [35], Node-RED [27], Mi-
crosoft Power Automate [7], SmartThings [12], Integromat [5], and Auto-
mate.io [1] are in the list of popular TAPs. In a TAP, users can select any
trigger and action services they would like to connect, where they only need
to know how to set up and relate them to each other using simple interfaces.
For instance, as shown in Figure 1, one could deploy and run a new applica-
tion like getting a hot co�ee when you wake up [3], saving new Instagram
photos to your Dropbox [10], or monitoring your baby [11], with a few user
interactions.

While TAPs enable novel applications across a variety of services, they
raise critical security and privacy concerns. A TAP is practically a “person-
in-the-middle” between trigger and action services because TAPs often have
extensive privileges to act on behalf of the users, for reading, modifying, and
deleting a broad range of user’s information such as email messages, loca-
tions, images, and documents. Attacks to a TAP thus imply compromising
the associated trigger and action services. Recently, untrusted TAP that can
misuse the rights causing security violations has been studied [20]. Open-
source TAPs like Node-RED, with the ability to run on the user’s hardware,
are alternatives for the users who would like to inspect executions occurring
in the TAP. Third-party applications, however, remain a threat to the users’,
the platform’s and the host system’s security. The fact that most TAP appli-
cations are developed by third-party application makers [18] intensi�es the
security risks, even if the platform and applications are open-source.

Our threat model indeed �ts in TAP ecosystems. Many of TAP applica-
tions deployed by users are third-party due to ease of use, especially when
the knowledge of programming is not presumed for the end users of TAPs.
Except for a small portion of o�cial applications developed by the platform

3



Introduction

(a)

(b)

(c)

Figure 1: An example of applications in: (a) IFTTT [3]; (b) Zapier [10]; (c)
Node-RED [11].

itself (which can still be considered as third-party), applications written by
third parties can execute any code in the user’s context. In some of TAPs,
multiple users are running applications concurrently at the same time and
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if the platform’s isolation has some breakouts, the attacker might break into
other user’s context.

Security policies

In order to secure programs in the presence of third-party modules and appli-
cations, this thesis aims at the most prevalent policies for con�dentiality (and
integrity), i.e., Access Control (AC) [29, 32] and Information-Flow Control
(IFC) [24, 31]. An access control policy speci�es the list of permitted access
requests from an authenticated user, and information-�ow control tracks the
information propagation during executions of a program. These two policies
are complementary since access control cannot prohibit revealing sensitive
data after being granted.

AC and IFC are vital when it comes to TAP’s security. An application in
TAPs like IFTTT and Zapier usually includes one trigger service and possibly
more than one action service. The code between these two parties (named
�lter code in IFTTT and Zap code in Zapier) may divulge a secret, alter a sen-
sitive message, or make unintended delays for the application, via API calls.
Monitoring each API call through the execution seems to be a promising ap-
proach to enforce access control policies.

In Node-RED, users can deploy applications or single modules in their
applications, represented by a graphical user interface (see Figure 1c). Thus,
the wiring between modules (or nodes) can be considered as the user intended
policy. The security of each node still remains a problem; monitoring the lo-
cal execution of each of them would be su�cient for enforcing the access
control policies. Therefore, by isolating nodes and verifying API calls ac-
cording to nodes’ policies, security of the platform and users is guaranteed.

IFC in JavaScript-driven TAPs like IFTTT and Node-RED has been stud-
ied in the literature [18, 34], resulting in tools based on infomation-�ow
trackers like JSFlow [23]. While these techniques detect and prevent infor-
mation �ow violations, lack of proper isolation between applications and
modules leads to major security issues. Violations such as leakage of sensi-
tive Dropbox URL links [18], retrieving the recent quakes from a fake website
instead of the o�cial one [17], and taking over the entire system [17] are in-
stances of the attacks to improper isolation mechanism. Note that in some
TAPs like IFTTT, users share the execution environment with a few others,
which also introduces security breaches to the other users.

With the goal to strike the balance between security and functionality
for JavaScript-driven TAPs, we devise a sound and transparent monitoring
framework to enforce access control policies at the levels of module, API,
value, and context. The proposed security mechanism is practical in the sense
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that the runtime overhead is tolerable. The �rst two papers introduce a prin-
cipled framework to sandbox JavaScript-driven TAPs that enforces access
control policies in the presence of third-party modules.

Nontransitive policies

In another research track on programs with third-party modules, nontran-
sitive policies have been recently introduced [26] as a natural �t for coarse-
grained information-�ow control where labels are speci�ed at the level of
modules. In a transitive IFC system [21, 22, 30], which is the classical model,
security levels constitute a partially ordered set and information may �ow to
all higher security levels, i.e., elements of the transitive closure of the �ow
relation de�ned by the policy. In this setting, expressing coarse-grained se-
curity requirements, especially between untrusted modules, seems to be dif-
�cult.

For example, module A may trust only module B, but the transitive rela-
tion indirectly propagates the trust relation further to the modules that the
module B also trusts – which is undesired for the module A. Mutual and
circular information �ows are also ruled out; modules A and B cannot send
information to each other unless both are at the same security level. They
must share the same �ow relations to any other modules, which might not
always be the case.

Untrusted code typically is executed in the same process, together with
sensitive trusted system code. Instead of trusting third-party-provided secu-
rity policies, application developers must specify security policies to protect
sensitive system modules from untrusted code. The need for more �exible
IFC policy language motivates designing �ow relations that are not neces-
sarily transitive, which is in contrast to the classical notion of security [21].

To support module-level coarse-grained information-�ow policies, Non-
transitive Noninterference (NTNI) and Nontransitive Types (NTT) [26] have
been suggested as a new security condition and enforcement. The third pa-
per demonstrates how a nonstandard information �ow policy, suitable to
reasoning at the level of modules of a program, can be reduced to a stan-
dard information policy, leveraging the standard type system to enforce the
IFC policy. The immediate result of this reduction is that nontransitive poli-
cies, which are expressive enough to specify IFC policies for systems with
third-party code, can be enforced by the existing mechanisms for classical
transitive noninterference.
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SandTrap: 
Securing JavaScript-driven

Trigger-Action Platforms

1

Nontransitive Policies
Transpiled

3

Securing Node-RED
Applications

2

Language-Based Security

Figure 2: The relationship between papers included in the thesis; the badges
indicate that the paper introduces a tool, provides formal guarantees, or both.

Thesis structure

Figure 2 schematically demonstrates the relationship between the papers in-
cluded in the thesis. As depicted, this thesis contributes to both theoretical
and practical aspects of language-based security. Paper 1 introduces a tool
for monitoring JavaScript programs and Paper 2 takes a step towards for-
malizing the monitor. Paper 3 goes from theory to practice, leading up to the
transpiler tool.

Paper 1: SandTrap: Securing JavaScript-driven Trigger-Action Plat-
forms [17]

This paper presents a security analysis of JavaScript-driven Trigger-Action
Platforms (TAPs), with our �ndings on identifying exploitable vulnerabilities
in the popular platforms, i.e., IFTTT, Zapier, and Node-RED. We demonstrate
critical exploitable vulnerabilities in the platforms and discuss their impacts,
e.g., by performing an empirical study on the Node-RED ecosystem. To tackle
the root of the security problems, we propose SandTrap, a secure yet �exible
monitor for JavaScript in the presence of Node.js modules. It supports �ne-
grained module-, API-, value-, and context-level policies and facilitates their
generation. SandTrap advances the state of the art in JavaScript sandboxing
by a novel approach that securely combines the Node.js vm module with fully
structural proxy-based two-sided membranes to enforce �ne-grained access
control policies. We show how SandTrap can secure IFTTT, Zapier, and
Node-RED applications with tolerable performance overhead, as evidence
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for the utility of the monitor.

Statement of contributions This paper was in collaboration with Daniel
Hedin, Musard Balliu, Eric Olsson, and Andrei Sabelfeld. I found some of
the vulnerabilities in Node-RED and helped my co-authors to identify them,
where we came up with the idea of sandboxing nodes. I was also in charge
of instantiating SandTrap to IFTTT, Zapier, and Node-RED. I designed and
implemented the case studies, where I reported the evaluation results for
secure and insecure applications.

Appeared in: Proceedings of the 30th USENIX Security Symposium (USENIX
Security’21)

Paper 2: Securing Node-RED Applications [16]

This paper expands on the recently-discovered critical exploitable vulner-
abilities by misusing sensitive APIs within nodes in Node-RED, where the
impact ranges from massive ex�ltration of data from unsuspecting users to
taking over the entire platform. Motivated by the need for an access con-
trol mechanism for Node-RED, we propose an essential model of the plat-
form, suitable to reason about nodes and �ows. This paper presents a princi-
pled framework to enforce �ne-grained API control for untrusted Node-RED
applications by local access checks that support module-, API-, value-, and
context-level policies. We prove soundness and transparency of the monitor.

Statement of contributions This paper was in collaboration with Musard
Balliu, Daniel Hedin, Eric Olsson, and Andrei Sabelfeld. As a step towards
proving correctness guarantees for SandTrap [17], with the help of my co-
authors, I presented the formal models of the monitor and Node-RED. I
proved that the enforcement mechanism is sound and transparent for an es-
sential model of Node-RED.

Appeared in: Protocols, Logic, and Strands: Festschrift in honor of Joshua
Guttman’21

Paper 3: Nontransitive Policies Transpiled [15]

This paper demonstrates that despite the di�erent aims and intuitions of
nontransitive policies compared to classical transitive policies, nontransitive
noninterference (NTNI) can in fact be reduced to classical transitive nonin-
terference (TNI). On the security characterization side, we show that NTNI
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corresponds to classical noninterference on a lattice that records source-to-
sink relations derived from nontransitive policies. On the enforcement side,
we devise a lightweight program transformation that enables us to leverage
standard �ow-sensitive information-�ow analyses to enforce nontransitive
policies. Further, we improve the permissiveness over the nonstandard non-
transitive type enforcement while retaining the soundness. An immediate
practical bene�t of our work is the implication that we can leverage state-
of-the-art �ow-sensitive information-�ow tools, which we demonstrate by
utilizing JOANA to enforce nontransitive policies for Java programs.

Statement of contributions This paper was in collaboration with Aslan
Askarov and Andrei Sabelfeld. I was responsible for formalizing and proving
the idea of transpiling NTNI to classical TNI, for programs with or without
I/O. I also implemented a prototype of the transpiler for Java programs and
performed the case studies.

Appeared in: Proceedings of the 6th IEEE European Symposium on Security
and Privacy (EuroS&P’21)
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1. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

Abstract. Trigger-Action Platforms (TAPs) seamlessly connect
a wide variety of otherwise unconnected devices and services,

ranging from IoT devices to cloud services and social networks. TAPs
raise critical security and privacy concerns because a TAP is e�ectively
a “person-in-the-middle” between trigger and action services. Third-
party code, routinely deployed as “apps” on TAPs, further exacerbates
these concerns. This paper focuses on JavaScript-driven TAPs. We
show that the popular IFTTT and Zapier platforms and an open-source
alternative Node-RED are susceptible to attacks ranging from ex�ltrat-
ing data from unsuspecting users to taking over the entire platform.
We report on the changes by the platforms in response to our �ndings
and present an empirical study to assess the implications for Node-RED.
Motivated by the need for a secure yet �exible way to integrate third-
party JavaScript apps, we propose SandTrap, a novel JavaScript moni-
tor that securely combines the Node.js vm module with fully structural
proxy-based two-sided membranes to enforce �ne-grained access con-
trol policies. To aid developers, SandTrap includes a policy generation
mechanism. We instantiate SandTrap to IFTTT, Zapier, and Node-RED
and illustrate on a set of benchmarks how SandTrap enforces a variety
of policies while incurring a tolerable runtime overhead.
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1 Introduction

Trigger-Action Platforms (TAPs) seamlessly connect a wide variety of other-
wise unconnected devices and services, ranging from IoT devices to cloud
services and social networks. TAPs like IFTTT [30], Zapier [74], and
Node-RED [48], allow users to run trigger-action apps (or �ows). Upon a
trigger, the app performs an action, such as “Get an email when your EZVIZ
camera senses motion” W, “Save new Instagram photos to Dropbox” W, and
control “a thermostat which can switch a heater on or o� depending on tem-
perature” W. IFTTT’s 18 million users run more than a billion apps a month
connected to more than 650 partner services [38].

JavaScript is a popular language for both apps and their integration in
TAPs. IFTTT enables app makers to write so-called �lter code, JavaScript
to customize the trigger and action ingredients, while Zapier o�ers so-called
code steps in JavaScript. For IFTTT’s camera-to-email app W, the �lter code
might, for example, skip the action during certain hours. Both IFTTT and
Zapier utilize serverless computing to run the JavaScript apps with Node.js
on AWS Lambda [4]. Node-RED is also built on top of Node.js, allow-
ing JavaScript packages from third parties. For third-party code, Zapier
and Node-RED adopt a single-user integration (Figure 1(a)), with a separate
Node.js instance for each user. In contrast, IFTTT utilizes a multi-user in-
tegration (Figure 1(b)) where a Node.js instance is reused to process �lter
code from multiple users. Instance reuse implies reducing the need for an
expensive cold start, when a function is provisioned with a new container.
IFTTT’s choice of reusing instances thus implies reducing costs under AWS’
economic model [4]. As we will see, the security implications of this choice
require great care.

TAP security and privacy challenges TAPs enable novel applications
across a variety of services. Yet TAPs raise critical security and privacy con-
cerns because a TAP is e�ectively a “person-in-the-middle” between trigger
and action services. TAPs often rely on OAuth-based access delegation to-
kens that give them extensive privileges to act on behalf of the users [22].
Compromising a TAP thus implies compromising the associated trigger and
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1. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

Trigger ActionApp

App

Malicious app maker

TAP

Trigger Action

(a)

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

TAP

(b)

Figure 1: Threat model of a malicious app maker: (a) Victim with a malicious
app; (b) Victim with only benign apps.

action services.
TAPs thrive on the model of end-user programming [68]. The fact that

most TAP apps are by third-party app makers [8] exacerbates security risks.
Wary of these concerns, Gmail recently removed their IFTTT triggers [27].
On the other hand, running the Node-RED platform, on one’s own hardware
with inspectable open-source code, makes trust to an external platform un-
necessary. Third-party apps, however, remain a threat not only to the users’
data accessible to these apps but to the entire system’s security.

Threat model Figure 1 illustrates our threat model: a malicious app (in red)
attacking the con�dentiality and integrity of user data. While we touch upon
some forms of availability (e.g., when the integrity of action data ensures the
associated device is enabled), availability is not the main focus of this work.
Indeed, e�ective approaches to mitigating typical denial-of-service attacks
are already in use, such as timing out on �lter code execution and request-
rate limiting [29].

Under the �rst attack scenario (Figure 1(a)), the user is tricked into in-
stalling a malicious app. This scenario applies to both single- and multi-user
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1. Introduction

architectures, including all of IFTTT, Zapier, and Node-RED. In IFTTT, the
�lter code is not inspectable to ordinary users, making it impossible for the
users to determine whether the app is malicious. Further, IFTTT does not
notify the users when apps are updated. The app might thus be benign upon
installation and subsequently updated with malicious content. In this sce-
nario, the attacker aims at compromising the con�dentiality of the trigger
data or the integrity of the action data. For example, a popular third-party
app like “Automatically back up your new iOS photos to Google Drive” W
can become malicious and leak the photos to the attacker unnoticeably to
the user. Further, the attacker targets compromising the con�dentiality of
the trigger data or the integrity of the action data of other apps installed by
the user. Finally, the attacker may also target compromising the TAP itself,
for example, gaining access to the �le system.

Under the second attack scenario (Figure 1(b)), the user has only benign
apps installed. This scenario applies to the multi-user architecture, as in
IFTTT. The attacker compromises the isolation boundary between apps and
violates the con�dentiality of the trigger data or the integrity of the action
data of other apps installed by other users. This is a dangerous scenario be-
cause any app user on the platform is a victim.

This leads to our �rst set of research questions: Are the popular TAPs
secure with respect to integrating third-party JavaScript apps? If not, what are
the implications?

TAP vulnerabilities To answer these questions, we show that the pop-
ular IFTTT and Zapier platforms, as well as an open-source alternative
Node-RED, are susceptible to a variety of attacks. We demonstrate how an
attacker can ex�ltrate data from unsuspecting IFTTT users. We show how
di�erent apps of the same Zapier user can steal information from each other
and how malicious Node-RED apps can compromise other components and
take over the entire platform. We report on the changes made by IFTTT and
Zapier in response to our �ndings. Both are proprietary closed platforms,
restricting possibilities of empirical studies with the app code they host. On
the other hand, Node-RED is an open-source platform, enabling us to present
an empirical study of the security implications for the published apps.

The versatility and impact of these exploitable vulnerabilities indicate
that these vulnerabilities are not merely implementation issues but instances
of a fundamental problem of securing JavaScript-driven TAPs.
SandTrap This motivates the need for a secure yet �exible way to integrate
third-party apps. A secure way means restricting the code. How do we limit
third-party code to the least privileges [61] it should have as a component
of an app? A �exible way means that some apps need to be fully isolated
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1. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

at the module level, while others need to interact with some modules but
only through selected APIs. Some interaction through APIs can be value-
sensitive, for example, when allowing an app to make HTTPS requests to
speci�c trusted domains. Finally, TAPs like Node-RED make use of both mes-
sage passing and the shared context [51] to exchange information between
app components, and both types of exchange need to be secured. While �ex-
ibility is essential, it must not come at the price of overwhelming the devel-
opers with policy annotations. This leads us to our second set of research
questions: How to represent and enforce �ne-grained policies on third-party
apps in TAPs? How to aid developers in generating these policies?

Addressing these questions, we present SandTrap, a novel JavaScript
monitor that securely combines the Node.js vm module with fully structural
proxy-based two-sided membranes [66, 67] to enforce �ne-grained access
control policies. To aid developers in designing the policies, SandTrap o�ers
a simple policy generation mechanism enabling both (i) baseline policies that
require no involvement from app developers or users (once and for all apps
per platform) and (ii) advanced policies customized by developers or users to
express �ne-grained app-speci�c security goals. We instantiate SandTrap to
IFTTT, Zapier, and Node-RED and illustrate on a set of benchmarks how to
enforce a variety of policies while incurring a tolerable runtime overhead.
Contributions In summary, the paper o�ers the following contributions:
• We demonstrate that the popular TAPs IFTTT and Zapier are susceptible

to attacks by malicious JavaScript apps to ex�ltrate data of unsuspecting
users. We report on the changes by the platforms (Section 3).

• We present vulnerabilities on Node-RED along with an empirical study
that estimates their impact (Section 4).

• We present SandTrap, a novel structural JavaScript monitor that enforces
�ne-grained access control policies (Section 5).

• We evaluate the security and performance of SandTrap for IFTTT, Zapier,
and Node-RED (Section 6).

2 Background

We give a brief background on IFTTT, Zapier, and Node-RED, consolidated
in Table 1. IFTTT and Zapier are commercial platforms with cloud-based app
stores, while Node-RED is an open-source platform, suitable for both local
and cloud installations, intended for a single user per installation. Node-RED
has a web-based app store for apps (�ows) and their components (packages).

IFTTT and Node-RED allow direct app publishing, with no review. While
Zapier and Node-RED allow the full power of JavaScript and Node.js APIs and
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3. IFTTT and Zapier vulnerabilities

modules, IFTTT is more restrictive. IFTTT’s third-party apps can be written
in TypeScript [40], a syntactical superset of JavaScript. The �lter code of the
apps must be free of direct accesses to the global object, APIs (other than
those to access the trigger and action ingredients), I/O, or modules. Some
of these checks, like restricting access to APIs and allowing no modules, are
enforced statically at the time of installation. Other checks are enforced at
runtime. Some of these checks, like the runtime check of allowing no code
to be dynamically generated from strings, were introduced after our reports
from Section 3.

Both IFTTT and Zapier utilize AWS Lambda [4] for running the
JavaScript code of the apps. Once an event is triggered to �re an app, AWS
Lambda’s function handler in Node.js evaluates the JavaScript code of the
app in the context of the parameters associated with the trigger and action
services. Lambda functions are computed by Node.js instances, where each
instance is a process in a container running Amazon’s version of the Linux
operating system. Node.js code inside AWS Lambdas may generally use APIs
for �le and network access. By default, �le access is read-only, with the ex-
ception of writes to the temporary directory.

When a victim is tricked into installing a malicious app (Figure 1(a)), the
malicious app targets the data that the app has access to, which applies to
all platforms. The other threats occur even if the victim only has benign
apps (Figure 1(b)). Because IFTTT’s architecture is multi-user, a malicious
app may compromise the data of all other users and apps. Zapier’s architec-
ture is single-user with container-based isolation provided by AWS Lambda.
This reduces the attack targets to the other apps of the same user. Although
Node-RED’s architecture is single-user, its local installation opens up for at-
tacking both the other apps of the same user and the entire platform.

The di�erences in these TAPs motivate the need for a versatile security
policy framework, which we design and evaluate in Sections 5 and 6, respec-
tively.

3 IFTTT and Zapier vulnerabilities

This section presents vulnerabilities in IFTTT and Zapier and the reaction of
the vendors to address them.

3.1 IFTTT sandbox breakout

IFTTT apps use �lter code to customize the app’s ingredients (e.g., adjust
lights as it gets darker outside) or to skip an action upon a condition (e.g.,
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3. IFTTT and Zapier vulnerabilities

logging location status only during working hours). Filter code has access to
the sensitive data of the associated trigger and action services. For example,
the �lter code of an app with the trigger “New Dropbox �le” has access to
the �le via the Dropbox.newFileInFolder.FileUrl API.

According to IFTTT’s documentation, “�lter code is run in an isolated
environment with a short timeout. There are no methods available that do
any I/O (blocking or otherwise)..." [29]. To achieve this isolation, IFTTT runs
a combination of static and dynamic security checks mentioned in Section 2,
restricting �lter code to only accessing the APIs that pertain to the triggers
and actions of a given app. For example, an app with an email action can set
the body of an email by Email.sendMeEmail.setBody() but may not use I/O or
global methods like setTimeout().

Unfortunately, it is possible to break out of the sandbox. We create a
series of proof-of-concepts (PoCs) that break out of the increasingly hardened
sandboxes.

PoC v1 The PoC follows the steps outlined below:
• Make a private app and activate it on IFTTT. The trigger and action services

are unimportant as long as it is easy for the attacker to trigger the app. For
example, a Webhook trigger is �red on a GET request to IFTTT’s webhook
URL.

• Evade the static security check in IFTTT’s web interface for �lter code by
using eval.

• As the �lter code is dynamically evaluated by the Lambda func-
tion, utilize the �lter code to import the AWS Lambda runtime mod-
ule and poison [36, 37] the prototype of one of the runtime classes:
rapid.prototype.nextInvocation located in /var/runtime/RAPIDClient.js.
The poisoning relies on the module caching of require, ensuring that the
imported runtime is the same instance as the one used by AWS Lambda.

• The poisoning allows collecting data between invocations of �lter code.
What makes this vulnerability critical is that Node.js instances are kept
alive for up to 30 minutes in order to process �lter code from arbitrary
apps/users. This means that the attacker can collect all future requests and
responses for unsuspecting users and apps on the same Node.js instance
for up to 30 minutes and then simply re-trigger the malicious app for con-
tinuous ex�ltration.

• Send the collected data to a server under the attacker’s control using
https.request. We con�rm successful ex�ltration of mock data on a test
clone of IFTTT’s Lambda function deployed in AWS Lambda.

• While poisoning the prototype of rapid.prototype.nextInvocation, our PoC
preserves its functionality, making the ex�ltration of information invisible
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1. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

to the users.
Impact The impact is substantial because it a�ects all IFTTT apps with �l-
ter code, while the attacker does not need any user interaction in order to
leak private data. Filter code is a popular feature enabling “�exibility and
power” [29]. While there are active forum discussions on �lter code [59],
IFTTT is a closed platform with no information about the extent to which
�lter code is used. Furthermore, it is invisible to ordinary users if the apps
they have installed contain �lter code. Thus, any app with access to sensitive
data may be vulnerable. Bastys et al. [8] estimate 35% of IFTTT’s apps have
access to private data via sensitive triggers, accessing such data as images,
videos, SMSes, emails, contact numbers, voice commands, and GPS locations.

Note that this vulnerability can also be exploited to compromise the in-
tegrity and availability of action data. While these attacks are generally
harder to hide, sensitive actions are prevalent. Bastys et al. [8] estimate 98%
of IFTTT’s apps to use sensitive actions.
PoC v2 IFTTT promptly acknowledged a “critical” vulnerability and de-
ployed a patch in a matter of days. The patch hardened the check on �lter
code, disallowing eval and Function, ensuring that require was not available
as a function in the TypeScript type system and locking down network access
for the Lambda function.

This leads us to a more complex PoC to achieve ex�ltration with the
same attacker capabilities. The challenge is to get hold of require in the face
of TypeScript’s type system and disabled eval. We create an app with func-
tionality to notify of a new Dropbox �le by email. Our �lter code implements
the additional attack steps as follows:

declare var require : any;
var payload = ‘try { ...
let rapid = require("/var/runtime/RAPIDClient.js");
// prototype poisoning of rapid.prototype.nextInvocation
... }‘ ;

var f = (() => {}).constructor.call(null,’require’, ’Dropbox’, ’Meta’,
payload);

var result = f(require, Dropbox, Meta);
Email.sendMeEmail.setBody(result);

The essential idea is to (i) bypass TypeScript’s type system and reintroduce
require via a declaration, since it is present in the JavaScript runtime, (ii)
use the function constructor while bypassing the Function �lter passing in
require, since functions created this way live in the global context where
require is not available, and (iii) use network capabilities of the malicious
app to do the ex�ltration, rather than the network capabilities of the lambda
function itself. We can thus package ex�ltration messages with the sensitive
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3. IFTTT and Zapier vulnerabilities

information of IFTTT users in the body of the email to the attacker by
setting Email.sendMeEmail.setBody(result).
PoCv3 In line with our recommendations to introduce JavaScript-level sand-
boxing, IFTTT introduced basic sandboxing on �lter code. Filter code is now
run inside of vm2 [63] sandbox. However, as we will see throughout the pa-
per, as soon as there is some interaction between the host and the sand-
box, there is potential for vulnerabilities. This leads us to our �nal PoC. Our
starting point is the observation that �lter code is allowed to use Moment
Timezone [44] APIs for displaying user and app triggering time in di�er-
ent timezones [29]. To make these APIs accessible, Meta.currentUserTime and
Meta.triggerTime objects, created outside the sandbox, are passed to the �lter
code inside the sandbox. Our PoC v3 poisons the prototype of the tz method
of the moment prototype. This allows the attacker to arbitrarily modify Meta.

currentUserTime and Meta.triggerTime for other apps, which is critical for apps
whose �lter code is conditional on time [28]. Thus, the attacker gains control
over whether to run or skip actions in other users’ apps.

As a short-term patch, vm2’s freeze [63] method patches the problem
by making moment prototype read-only. However, while this patch pre-
vents prototype poisoning of the moment objects, it does not scale to at-
tacks at other levels of abstraction. For example, URL attacks by Bastys
et al. [8] on a user who installs a malicious app (Figure 1(a)) allow the
attacker ex�ltrating secrets by manipulating URLs. An IFTTT app that
backs up a Dropbox �le on Google Drive may thus leak the �le to the at-
tacker by setting the Google Drive upload URL to "https://attacker.com/log

?"+ encodeURIComponent(Dropbox.newFileInFolder.FileUrl) instead of Dropbox.
newFileInFolder.FileUrl.

We learn two key lessons from these vulnerabilities. First, the problem
of secure JavaScript integration on TAPs is not merely a technical issue but
a larger fundamental problem. Already on IFTTT, it is hard to get it right
and we will see further complexity for Zapier and Node-RED. Second, these
attacks motivate the need for enforcing (i) a baseline security policy for all
apps on the platform and (ii) advanced app-speci�c policies. In particular,
there is need for �ne-grained access control at module-level (to restrict ac-
cess to Node.js modules, for all apps), API-level (to only allow access to trig-
ger and action APIs and only read access to Meta.currentUserTime and Meta.

triggerTime, for all apps) and value-level (to prevent attacks like URL manip-
ulation, for speci�c apps).
Coordinated disclosure We had continuous interactions with IFTTT’s se-
curity team through the course of discovering, reporting, and �xing the vul-
nerabilities. Our �rst report already suggested proxy-based sandboxing as
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a countermeasure, which is what IFTTT ultimately settled for. After each
patch, IFTTT’s security team reached back to us asking to verify it. We re-
ceived bounties acknowledging our contributions to IFTTT’s security.

3.2 Zapier sandbox breakout

In the interest of space, we keep this section brief and focus on the di�erences
between Zapier and IFTTT. One di�erence is that it is currently not possible
to publish zaps (Zappier apps) with code steps for other users. However, sce-
narios when a user copies malicious JavaScript from forums are realistic [24].
In contrast to IFTTT, Zapier allows fully-�edged JavaScript in zaps with �le
system (fs) and network communication (http) modules enabled by default.
Another di�erence is in the use of AWS Lambda runtimes. Zapier’s lambda
functions are not shared across users. However, we discover that the same
Lambda function sometimes runs code steps of di�erent zaps of the same user
(Figure 1(a)).

PoC We demonstrate the vulnerability by the following PoC. One zap is be-
nign: it sends an email noti�cation whenever there is a new Dropbox �le
and uses a code step to include the size of the �le in the email body. The
other zap is malicious: it has no access to Dropbox and yet it ex�ltrates the
data (including the content of any new Dropbox �les) to the attacker. We
demonstrate the attack on our own test account, involving no other users.

Impact Because Lambda functions are not shared among users, the impact is
somewhat reduced. Nevertheless, these attacks can become more impactful if
Zapier decides to allow users sharing zaps with JavaScript. Zapier con�rmed
that they reuse execution sandboxes per user per language and acknowl-
edged that our PoC exposed unintended behavior. This led to identifying a
bug in the way they handle caching in their Node.js integration.

This vulnerability further motivates the need for �ne-grained access con-
trol at module-, API-, and value-levels. Compared to IFTTT, module- and
API-level policies are particularly interesting here because of the more lib-
eral choices of what code to allow in Zapier’s code steps. Similar to IFTTT,
it is natural to divide the desired policies into a baseline policy for all zaps
that protects the platform’s sandbox and advanced zap-speci�c policies that
protect zap-speci�c data.

Coordinated disclosure Zapier was also quick in our interactions. We re-
ceived a bounty acknowledging our contributions to Zapier’s security.

26



4. Node-RED vulnerabilities

global
context

Flow Flow

Node Node
message

Node-RED

Nodeflow
context

Node

Node.js

(a)

global
context

Flow Flow

Node Malicious
Node

message

Node-RED

Nodeflow
context

Malicious
Node

module

object

Node.js

(b)

global
context

Flow Flow

Node Node
message

Node-RED

Malicious
Node

flow
context

Malicious
Node

Node.js

(c)

Figure 2: (a) Node-RED architecture; (b) Isolation vulnerabilities; (c) Context
vulnerabilities.

4 Node-RED vulnerabilities

Node-RED is “a programming tool for wiring together hardware devices,
APIs and online services” [48]. We overview the key components of
Node-RED (Section 4.1) and identify two types of vulnerabilities that ma-
licious app makers can exploit: platform-level isolation vulnerabilities (Sec-
tion 4.2) and application-level context vulnerabilities (Section 4.3). We per-
form empirical evaluations on a dataset of o�cial and third-party Node-RED
packages to study the implications of exploiting these vulnerabilities. We
characterize the impact of malicious apps by studying code dependencies
and by a security labeling of sources and sinks of Node-RED nodes. We also
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study the prevalence of vulnerable apps that expose sensitive information to
other Node-RED components via the shared context. We �nd that more than
70% of Node-RED apps are capable of privacy attacks and more than 76% of
integrity attacks. We also identify several concerning vulnerabilities that can
be exploited via the shared context.

4.1 Node-RED platform

Figure 2a depicts the Node-RED architecture consisting of a collection of
apps, called �ows, connecting components called nodes. The Node-RED run-
time (built on Node.js) can run multiple �ows enabling not only the direct
exchange of messages within a �ow, but also indirect inter-�ow and inter-
node communication via the global and the �ow context [51].

Nodes are reactive Node.js applications that may perform side-e�ectful
computations upon receiving messages on at most one input port (dubbed
source) and send the results potentially on multiple output ports (dubbed
sinks). The three main types of Node-RED nodes are input (containing no
sources), output (containing no sinks), and intermediary (containing both
sources and sinks). Moreover, Node-RED uses con�guration nodes (contain-
ing neither sources nor sinks) to share con�guration data, such as login cre-
dentials, between multiple nodes.

Flows are JSON �les wiring node sinks to node sources in a graph of
nodes. End users can either con�gure and deploy their own �ows on the plat-
form’s environment or use existing �ows provided by the o�cial Node-RED
catalog [47] and by third-parties [52]. Figure 3 shows a �ow that retrieves
earthquake data for logging and notifying the user whenever the magnitude
exceeds a threshold. To facilitate end-user programming [68], �ows can be
shown visually via a graphical user interface and deployed in a push-button
fashion.

Contexts provide a way to store information shared between di�erent
nodes without using the explicit messages that pass through a �ow [51]. For
example, a sensor node may regularly publish new values in one �ow, while
another �ow may return the most recent value via HTTP. By storing the

Figure 3: Earthquake noti�cation and logging W.
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sensor reading in the shared context, it makes the data available for the HTTP
�ow to return. Node-RED restricts access to the context at three levels: (i)
Node, only visible to the node that sets the value, (ii) Flow, visible to all nodes
on the same �ow, and (iii) Global, visible to all nodes on any �ow.

Node-RED security relies on deployment on a trusted network ensuring
that the users’ sensitive data is processed in a user-controlled environment,
and on authentication mechanisms to control access to nodes and wires [49].
Further, the o�cial node Function W runs the code provided by the user in
a vm sandbox [54]. However, Function nodes are not suitable for running un-
trusted code because vm’s sandbox “is not a security mechanism” [54], and,
unsurprisingly, there are straightforward breakouts [32].

We present Node-RED attacks and vulnerabilities that motivate a baseline
policy to protect the platform and advanced �ow- and node-speci�c policies
at di�erent granularity levels.

4.2 Platform-level isolation vulnerabilities

Unfortunately, Node-RED is susceptible to attacks by malicious node makers
due to insu�cient restrictions on nodes. Attackers may develop and pub-
lish nodes with full access to the APIs provided by the underlying runtimes,
Node-RED and Node.js, as well as the incoming messages within a �ow. Fig-
ure 2b illustrates the di�erent attack scenarios for malicious nodes. At the
Node.js level, an attacker can create a malicious Node-RED node including
powerful Node.js libraries like child_process, allowing the attacker to execute
arbitrary commands and take full control of the user’s system [56]. Restrict-
ing library access is challenging in Node-RED because attackers can exploit
trust propagation due to transitive dependencies in Node.js [58, 75], while at
the same time access to a sensitive library like child_process is necessary for
the functionality of Node-RED.

At the platform level, RED [50], the main object in the Node-RED struc-
ture, is also vulnerable. A malicious node can manipulate the RED object to
abort the server (e.g., RED.server._events = null) or introduce a covert chan-
nel shared between multiple instances of a node in di�erent �ows (e.g., by
adding new properties to the RED object like RED.dummy). These attacks moti-
vate the need for a platform-level baseline policy of access control at the level
of modules and shared objects.

Moreover, application-speci�c attacks call for advanced security goals
and thus advanced policies. If a malicious node is used within a sensitive �ow,
it may read and modify sensitive data by manipulating incoming messages.
For example, a malicious email node can forward a copy of the email text
to an attacker’s address in addition to the original recipient. The benign
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code W sets the sending options sendopts.to to contain only the address of
the intended recipient:
sendopts.to = node.name || msg.to; // comma separated list of addresses

A malicious node maker can modify the code to send the email to the at-
tacker’s address as well:
sendopts.to = (node.name || msg.to) + ", attacker@attacker.com";

This attack motivates the need for �ne-grained access control at the level of
APIs and their input parameters.

Node-RED’s liberal code distribution infrastructure facilitates this type
of attack because nodes are published through the Node Package Manager
(NPM) [55] and automatically added to the Node-RED catalog. A legitimate
package can have their repository or publishing system compromised and
malicious code inserted. A package could also be de�ned with a name sim-
ilar to others, tricking users into installing a malicious version of an other-
wise useful and secure package. This type of name squatting [75] attack is
especially e�ective in Node-RED, as the “type” of nodes (what �ows use to
specify them) is simply a string, which multiple packages can possibly match.
Finally, a pre-de�ned �ow can include the attacker’s malicious node unless
the user inspects each and every node to verify that there are no deviations
from the expected “type” string. This further increases the ease with which
an attacker’s package can be substituted into a previously secure �ow.

We estimate the implications of such attacks by empirical studies of (i)
trust propagation due to package dependency [58, 75], and of (ii) security la-
beling of sensitive sources and sinks [8]. We have scraped 2122 packages (in
total 5316 nodes) from the Node-RED catalog to analyze their features and
�nd that packages contain 4.16 JavaScript �les (793.45 LoC) on average, with
o�cial packages containing on average 1.76 �les (506.77 LoC). Our analy-
sis shows that packages may contain complex JavaScript code, thus allowing
malicious developers to camou�age attacks in the codebase of a node. Our re-
sults show that, on average, a package has 1.85 direct dependencies on other
Node.js packages. More importantly, the popularity of package dependen-
cies such as �lesystem (fs), HTTP requests (request), and OS features (os)
demonstrate the access to powerful APIs, enabling malicious developer to
compromise the security of users and devices.

In a security labeling of 408 node de�nitions for the top 100 Node-RED
packages, by following the approach used by Bastys et al. [8], we �nd that
privacy violations may occur in 70.40% of �ows and integrity violations in
76.46%. The vast number of privacy violations in Node-RED re�ects the
power of malicious developers to ex�ltrate private information. The details
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of the empirical studies are reported in Appendix 1.A.

4.3 Application-level context vulnerabilities

Figure 2c illustrates the di�erent attack scenarios to exploit context vulnera-
bilities by reading and writing to shared libraries and variables in the global
and �ow contexts. Since the Node context shares data only with the node
itself, we focus on the shared context at the levels of Flow and Global. Note
that here malicious nodes exploit vulnerable components (other Node-RED
nodes) and succeed even if the platform is secured against the attacks pre-
sented in Section 4.2.

We extend our empirical evaluation to detect vulnerabilities that may
involve the shared context. We study a collection of 1181 unique (JSON-
parsable, non-empty, non-duplicate) �ow de�nitions published in the o�cial
catalog [52]. Anyone can publish �ows by merely creating an account on
Node-RED’s website and submitting an entry. Because of the lack of valida-
tion on �ow de�nitions, we �nd 1453 empty, invalid, or duplicate entries of
the �ows we have scraped.

We analyze the code of built-in nodes to identify the usage of the shared
context. Several o�cial nodes provide such a feature, including the nodes
Function (executing any JavaScript function), Inject (starting a �ow), Template
(generating text with a template), Switch (routing outgoing messages), and
Change (modifying message properties). To identify �ows that make use of
the shared context we search for occurrences of such nodes in the �ow de�-
nitions. Our study �nds that at least 228 published �ows make use of �ow or
global context in at least one of the member nodes, and analyzing the pub-
lished Node-RED packages shows that at least 153 of them directly read from
or modify the shared context. While most of nodes and �ows do not use the
shared context, some use it heavily, and even this small minority can have
instances of security �aws. In the following, we report on �ndings from a
manual analysis of the top 25 most downloaded nodes and �ows.
Exploiting inter-node communication A common usage of the shared
context is for communication between nodes. This may lead to integrity and
availability attacks by a malicious node accessing the shared data to modify,
erase, change, or entirely disrupt the functionality.

An example of such vulnerability is the Node-RED �ow “Water Utility
Complete Example” W targeting SCADA systems. This �ow manages two
tanks and two pumps. The �rst pump pumps water from a well into the �rst
tank, and the second pump transfers water from the �rst to the second tank.
The �ow leverages the Global context to store data managing the water level
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of each tank as read from the physical tanks.
global.set("tank1Level", tank1Level);
global.set("tank1Start", tank1Start);
global.set("tank1Stop", tank1Stop);

Later, the �ow retrieves this data from the Global context to determine
whether a pump should start or stop:

var tankLevel = global.get("tank1Level");
var pumpMode = global.get("pump1Mode");
var pumpStatus = global.get("pump1Status");
var tankStart = global.get("tank1Start");
var tankStop = global.get("tank1Stop");
if (pumpMode === true && pumpStatus === false &&

tankLevel <= tankStart){
// message to start the pump

}
else if (pumpMode === true && pumpStatus === true &&

tankLevel >= tankStop){
// message to stop the pump

}

A malicious node installed by the user could modify the context relating to
the tank’s reading to either exhaust the water �ow (never start) or cause
physical damage through continuous pumping (never stop). A related
example with potential physical disruption is a �ow controlling a sprinkler
system with program logic dependent on the global context W.
Exploiting shared resources Another usage of the context feature is to
share resources such as common libraries. In addition to integrity and avail-
ability concerns, this pattern opens up possibilities for ex�ltration of private
data. An attacker can encapsulate the library such that it collects any sensi-
tive information sent to this library. Appendix 1.A.3 details such vulnerabil-
ities, including ex�ltration of video streaming for motion detection W, facial
recognition via EMOTIV wearable brain sensing technology W and others
W, W.

These vulnerabilities motivate the need for advanced security policies of
access control at the level of context.

5 SandTrap

We design and implement SandTrap to provide secure yet �exible Node.js
sandboxing including module support via CommonJS [53].

At the core, SandTrap uses the vm module of Node.js in combination with
two-sided membranes [66, 67] to provide secure isolated execution while en-
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forcing �ne-grained two-sided access control featuring read, write, call and
construct policies on cross-domain interaction. The novelty of SandTrap lies
in the secure combination of the Node.js vm module and fully structural re-
cursive proxying, producing a general structural JavaScript monitor that can
be used in many di�erent settings. We refer the reader to Section 7 for a more
detailed comparison between SandTrap and related approaches.

While SandTrap is primarily a Node.js sandbox, it is possible to deploy
SandTrap in other JavaScript runtimes (e.g., web browsers) using tools such
as Browserify [12] and vm poly�lls. To ensure the integrity of such deploy-
ments, it is important to assess security of the exposed API, as discussed in
Section 5.5.

The SandTrap source code and documentation can be reached via the
SandTrap home [2]. This section presents the core architecture, the policy
language and generation, the security, and the limitations of SandTrap.

5.1 The core architecture of SandTrap

Similarly to other vm-based approaches like vm2 [63] and NodeSentry [70],
SandTrap uses the vm module to provide the basis for isolation between the
host and the sandbox. The vm module provides a way to create new execu-
tion contexts: fresh, separate execution environments with their own global
objects. On its own, the vm module does not provide secure isolation. Ob-
jects passed into the contexts can be used to break out of the isolation and
interfere with the host execution environment [32]. Such breakouts rely on
host primordials, such as the Function constructor, being accessible via the
prototype hierarchy of the objects passed in.

To remedy this and to provide access control, SandTrap uses two-sided
membranes implemented as mutually recursive and dual JavaScript proxies
[20] (not to be confused with other proxies, e.g., web proxies) in combination
with primordial mapping.
Securing cross-domain interaction Cross-domain interaction occurs
when the code of one domain (host or sandbox) interacts with entities of
the other. The interaction includes, but is not limited to, reading or writing
properties of the entity, calling the entity in case it is a function, or using the
entity to construct new entities in case it is a constructor function. The full
set of possible interactions is de�ned by the proxy interface.

Cross-domain interaction may in turn cause cross-domain transfer of val-
ues (primitive values, objects, and functions). Values passing between the do-
mains are handled di�erently depending on their type. Primitive values are
transferred without further modi�cation, primordials are mapped to their
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respective primordial, while other entities are proxied to be able to capture
subsequent interaction. The primordial mapping serves two purposes in this
setting. First, it protects the vm from breakouts, and second, it ensures that
instanceof works as intended for primordials. Without the mapping, entities
passed between the domains would not be instances of the opposite domain’s
primordials.

Proxying maintains two proxy caches that relate host objects and their
sandbox counterpart (primordials, entities and their proxies). This prevents
re-proxying, which would break equality, and cascading proxying. The
caches are implemented using weakmaps to avoid retaining objects in mem-
ory. Thus, if an object and its proxy are dead in both domains, nothing should
prevent the garbage collector to remove both.

The proxies capture all interaction with the proxied entity, verifying, e.g.,
every read, write, call and construct with the security policy before allowing
it. Further, the proxies recursively and dually proxy any entites transferred
between the domains as a result of the interaction. More precisely: (i) when
a property is read from a proxied entity, the result is covariantly proxied
before being returned if the read is allowed, (ii) when a property is written
to a proxied entity, the written value is contravariantly proxied before being
written if the write is allowed, and (iii) when a proxied function is called or
used as a constructor, the arguments are contravariantly proxied, and the
result is covariantly proxied if the call or constructor use is allowed.

The basic operation of the proxies is illustrated in Figure 4. Figure 4a
shows how entities that are passed between the host and the sandbox are
proxied, and how all property accesses are trapped and veri�ed against the
read-write access control policy before access is granted (indicated by the
r, w annotations in the �gure). Figure 4b illustrates the recursive proxying
and the primordial mapping. Accessing a property that results in an en-
tity not only veri�es that the access is allowed, but also uses the policy to
proxy the returned entity to trap subsequent interaction with it. Thus, in
the �gure, when accessing the .prototype property of the proxied function
myFunction, the proxy �rst veri�es that the access is allowed and then proxies
the result with the corresponding entity policy. This ensures that subsequent
accesses to the returned prototype object, myPrototype, e.g., fetching its pro-
totype by reading the __proto__ property or using Object.getPrototypeOf(),
are trapped. Without the recursive proxying, it would be possible to reach
the host’s Object.prototype from the prototype of myPrototype, which would
potentially lead to a breakout. Instead, since the access is trapped, the pri-
mordial mapping returns the sandbox’s Object.prototype in place of the host’s
Object.prototype.
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Figure 4: (a) The symmetric access control of SandTrap; (b) The transitive
proxying and primordial mapping of SandTrap.

Cross-domain interaction roots SandTrap implements a CommonJS exe-
cution environment. In this setting, all cross-domain interaction is rooted in
either (i) sandbox interaction with host objects injected into the new sand-
box context, (ii) sandbox interaction with modules loaded using the require

implementation provided to the sandbox, or (iii) host interaction with the
result of the execution of the sandbox code, i.e., the returned module.

To provide a secure execution environment, each of the roots is proxied
using the corresponding policy described in Section 5.2 — the global policy,
the external module policies, and the module policy.

5.2 SandTrap policy language

SandTrap policies allow for read/write control of all properties on all entities
shared between the host and the sandbox in addition to call policies on func-
tions (including methods) and construct policies on constructor functions.
While the policy language is two-sided, the typical use case envisioned is a
trusted host using the sandbox to limit and protect anything passed in to or
required by the sandboxed code.
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The SandTrap policy language is designed to strike a balance between
complexity, expressiveness, and possibility to support policy generation. As
such, the policy language supports global (policy wide) and local (limited to
a subgraph of the policy) defaults that control the interaction with the parts
of the environment not explicitly modeled by the policy, as well as proxy
control policies, executable function policies used to create value-dependent
parameterized function policies, and dependent function policies. For space
reasons, we refer the reader to the home of SandTrap [2] for the more ad-
vanced features of the policy language.

A SandTrap policy consists of a collection of JSON objects. There are
three types of mutually recursive policy objects corresponding to the entities
they control: (i) EntityPolicy provides policies for objects and functions, (ii)
PropertyPolicy for properties, and (iii) CallPolicy for functions and methods.
To allow for sharing and recursion, entity policies can be named and referred
to by name. The core of the policy language is de�ned as follows:

interface EntityPolicy {
options? : PolicyOptions,
override? : string,
properties? : { [key: string]: PropertyPolicy }
call? : CallPolicy,
construct? : CallPolicy }

interface PropertyPolicy {
read? : boolean,
write? : boolean,
readPolicy? : EntityPolicy | string
writePolicy? : EntityPolicy | string }

interface CallPolicy {
allow? : boolean | string,
thisArg? : EntityPolicy | string,
arguments? : (EntityPolicy|string|undefined)[],
result? : EntityPolicy | string }

Entity policies assign property policies to properties. If the entity is a func-
tion, the policy also assigns call and construct policies that control whether
the function can be called or used to construct new objects. Property
policies control reading and writing to the property (policies for accessor
properties are inferred from property policies), while call policies are either
booleans or strings. A call policy that is a string is an executable function
policy; the string should contain the code of a JavaScript function returning
a boolean. Executable function policies are provided with the arguments
of the function call they govern and can make decisions based on these
arguments. This way it is possible to validate or constrain the arguments
of calls. Consider the example policy below that enforces a parameterized
policy. On execution, the policy veri�es that the �rst argument target is
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equal to the policy parameter of the same name. Similar policies can be
used, e.g., to constrain network communication to certain domains, to give
the end user the ability to con�gure the policy without changing the policy.

{..., "call": {"allow": "(thisArg, target, data) =>
{return target == this.GetPolicyParameter(‘target’);}",

...}}

The recursive nature of the policies is apparent; in addition to control-
ling access, property policies assign policies to entities read from or written
to the property, and call policies assign policies to the arguments and the
return value of the function. Thus, the structure of the policies naturally fol-
lows the structure of the object hierarchies they are controlling. Since such
hierarchies are dynamic and the policies are static, it is important that poli-
cies can be partial. The question marks in the policy language above indicate
that all parts of the policies are optional. In the case of missing policies, Sand-
Trap falls back to the local or global con�gurable defaults using default-deny
if not con�gured otherwise.
Policy and interaction roots Section 5.1 identi�ed three sources of cross-
domain interaction that must be protected. A security policy for a monitor
instance is built up by the security policies for the cross-domain interaction
roots and consists of structural policies for the parts of the execution envi-
ronment that is subject to explicit policies. The policy roots are: (i) the global
policy, the entity policy for the initial context, i.e., the global object and any-
thing reachable from it, (ii) the external module policies, entity policies for any
modules that the sandbox should be allowed to require, and (iii) the module
policy, the entity policy of the result of code execution.

A security policy is stored as a collection of �les each containing a policy
for an entity. The �lename and relative path in the policy directory consti-
tutes the name of the policy and can be used to refer to it in other policies.
Protection levels Sections 3 and 4 motivate the need for protection at four
di�erent levels: module-, API-, value- and context-levels. SandTrap supports
these levels: (i) Module-level protection is expressed by the absence or pres-
ence of policies for the module; access to modules for which there is no pol-
icy is refused. (ii) API-level protection is expressed by an entity policy on
the entity implementing the API, with both read and write policies for the
properties (including functions and methods), and call and construct poli-
cies on functions and methods. (iii) Value-level protection is expressed by
the call and construct policies that, in their most general form, are functions
from the values of the arguments to boolean. (iv) Context-level protection is
expressed as read and write policies on any context shared between the host
and the sandbox. Controlling which parts of the API can be read and executed
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enables granting sandboxed code partial access to an API, while controlling
which parts can be written enables protecting the integrity of the API and
similarly for the shared context. Both are fundamental for practical sharing
of APIs and context between the host and (potentially) multiple sandboxes.

5.3 Policy generation and baseline policies

Since the policies follow the structure of the cross-domain interaction, they
can become rather large, depending on the complexity of the interaction.
This is alleviated by SandTrap’s support for policy generation used to create
baseline policies of platforms that can be further extended and specialized by
apps and users.
Policy generation SandTrap supports �ne-grained runtime policy genera-
tion. Policy generation is a special execution mode of SandTrap that changes
its behavior from enforcing policies to capturing all cross-domain interac-
tions. The captured interaction is used to modify or extend the policy to al-
low the interaction to take place. To make staged generation possible, Sand-
Trap’s behavior can be controlled both globally and locally. It is thus possible
to have one part of the policy enforced and unmodi�ed while generating or
extending other parts.

The policy generation mechanism is not intended to produce the �nal
policy, but rather to serve as a helpful starting point for customizing policies.
Indeed, policy generation is limited to the paths explored (inherent to every
runtime exploration technique) and to the generation of boolean policies. We
envision that selected parts of test suites can successfully be used to create
an initial policy with acceptable static cross-domain interaction coverage.

After the initial generation, the resulting policy might need tuning; ac-
cess permission may need changing, undesired interactions pruned, and ad-
vanced policies like dependent function guards or dependent arguments may
be handcrafted when desired. For interactions not explicitly modeled by the
policy, the defaults will be used. Using the default-deny policy provides the
best security for the host.
Baseline policies TAPs provide excellent scenarios for discussing one of the
use cases of SandTrap. The TAPs have three easily identi�able stakeholders:
the platform provider, the app provider, and the user of the platform and
its apps. Depending on the relation between the platform and its apps, the
responsibility of policy generation falls on di�erent constellations of stake-
holders, as summarized in Table 1. Baseline policies are speci�ed once and
for all apps per platform. They do not require involving app developers or
users. In general, the platform provider produces and distributes a baseline
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policy intended to protect the platform and its services. For IFTTT, the ser-
vices include the actions and triggers; for Zapier, the node-fetch [46] mod-
ule, the StoreClient (module implementing the communication with a simple
database), and common modules; and for Node-RED, common modules in-
cluding other nodes. Building on these baseline policies, the apps can further
restrict the use of the services by advanced value-based parameterized poli-
cies to be instantiated by the end user. For IFTTT, such policies may entail
limiting URLs or email addresses for certain actions. Similarly for Zapier,
they might also include restrictions on details of module use. For Node-RED,
which nodes are at full power, such policies may entail node-to-node com-
munication or module use. Section 6 provides more information on actual
baseline and advanced policies.

Ultimately, the platform is responsible for the correctness of the policies.
For the advanced policies, we envision that the platforms can bene�t from
a vetting mechanism where app developers submit app-speci�c policies that
are vetted by the platform (similar to the vetting of service integrations al-
ready practiced by IFTTT and Zapier). Note that even if app developers miss
the coverage for all paths when generating policies, the platform can use
default-deny to guarantee security for uncovered paths.

The advantage of our model is that the user is fully freed of the policy
annotation burden in the case of baseline policies because they are provided
by the platform. When advanced policies are desired by users, they may in-
stantiate the policies per the instructions from the platform provider. For
example, the user might wish to constrain the phone numbers to which an
IFTTT app may send a text message. This customization is a natural exten-
sion of setting app ingredients already present on IFTTT.

5.4 Practical considerations

Like all vm-based approaches, SandTrap must intercept all cross-domain in-
teraction to prevent breakouts and (in the case of SandTrap) to enforce the
�ne-grained access control policy. This kind of interception naturally comes
at a cost (in particular for built-in constructs like array), which grows with
increased cross-domain interaction. In our experiments with TAPs, the cross-
domain interaction is limited and creates tolerable overhead for the applica-
tion class (see Table 2). We expect this to carry over to other application
classes with relatively limited cross-domain interaction, which is the typical
use case for sandboxed execution.

Another consideration relating to the cross-domain interaction is the
complexity of security policies. For IFTTT and Zapier, with more constrained
cross-domain interaction, this was not an issue, while Node-RED node poli-
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cies were decidedly larger. Even so, in the latter case, we were able to spe-
cialize the generated policies to our needs with relative ease without exten-
sive knowledge of the details of the nodes and their precise interaction with
Node-RED.

It is important to note that, for scalability reasons, cross-domain inter-
action defaults to only trigger if the sandbox interacts with host objects or
with binary modules. This is secure, since SandTrap does not use the Node.js
require function to load source modules, but instantiates the source module
on a per-sandbox basis. Thus, even if the code running in the sandbox makes
heavy use of source modules, no cross-domain interaction is triggered and
no policy expansion or execution slowdown should occur.

In comparison to approaches that rely on total isolation in the form of
separate heaps, SandTrap has the bene�t of easily unlocking controlled and
secure entity sharing, including of binary modules. While it is possible to
pass objects via serialization and even serialize a binary API by what essen-
tially amounts to RPC, it incurs a large performance overhead and requires
tool support to avoid the burden of hand crafting the serialization code.

All proxy-based approaches are limited by the fact that proxies not al-
ways are fully transparent; passing proxies into certain parts of the standard
API may break the API in various ways. This may have implications depend-
ing on the target domain for SandTrap, although we did not encounter these
issues when working with the TAPs.

5.5 Security considerations

It is challenging to pinpoint the sandbox invariants [10] needed for secure
execution in a SandTrap sandbox, partly because the invariants must relate
to the complex execution model of v8 and partly because the invariants must
be parameterized over the security policies that govern the execution.

On an idealized level, both secure execution and security policy enforce-
ment rely on the following two sandbox invariants: (i) there is no unmediated
access to host entites from the sandbox, and (ii) there is no unmediated access
to sandbox entities from the host. The security of SandTrap relies on the ini-
tial execution environment to satisfy the invariants, and that the invariants
are maintained by subsequent cross-domain interactions.

One major challenge is de�ning the meaning of unmediated access in
the presence of policies and, in particular, exposed APIs. For exposed APIs,
the mediation is provided in terms of the cross-domain interaction, which
may or may not be enough to constrain the behavior of the APIs. Consider,
e.g., exposing the Function.constructor or eval. While it is possible to do
so in a security policy, the free injection of executable code into the host
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may compromise the security of the sandbox, resulting in breaches of the
invariants (i) and (ii). Thus, it cannot be allowed and leads us an important
property for secure use: no exposed API must be able to violate the sandbox
invariants.

Ensuring andmaintaining the sandbox invariants To ensure the invari-
ant (i), the initial context object (which is a host object) has its prototype and
constructor �elds set the sandbox equivalents, and any host objects injected
into the sandbox context are proxied using the global object policy. To en-
sure the invariant (ii), the result of the execution is proxied using the module
policy.

To maintain the sandbox invariants, it is important that all exposed APIs
are scrutinized from a security perspective. This has been done for the initial
API exposed by SandTrap when used on the Node.js platform and must be
done for every deployment platform. As an example, consider the setTimout

function. On Node.js it accepts only a function object, while in many other
settings, it also accepts a string. In the latter case, the setTimout function
essentially acts as Function.constructor or eval, and further protection steps
must be taken.

Further, SandTrap provides a CommonJS execution environment with
access to both source modules, binary modules and built-in modules. The
access to the latter is conditioned on the existence of explicit security policies
that govern the access to the exposed modules. To guarantee the invariant
(i), every binary or built-in module is proxied using the corresponding secu-
rity module before being returned to the sandbox. However, care must be
taken when providing policies for built-in or binary modules that have more
power than the language and can easily circumvent any language-based pro-
tection mechanisms including violation of the sandbox invariants. We refer
the reader to the home of SandTrap [2] for an insight into the issues that
otherwise can occur.

Provided that the exposed API is safe, the invariants are maintained un-
der normal execution by the dual recursive proxies using co- and contra-
variant primordial mapping or proxying on entities passing between the do-
mains. For cross-domain exceptions (from code execution in the form of
function calls, object construction, access to getters or setters), the invari-
ants are maintained by catching and appropriately proxying the exceptions
before they are rethrown.
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6 Evaluation

This section evaluates the security and performance of SandTrap on a set
of benchmarks for IFTTT, Zapier, and Node-RED. Appendix 1.B reports the
details of these experiments. We have studied 25 secure and 25 insecure �l-
ter code instances for IFTTT, and 10 benign and 10 malicious use cases for
each Zapier and Node-RED. For space reasons, we report on 5 secure and 5
insecure cases for each of the TAPs: IFTTT, Zapier, and Node-RED.

Table 2 summarizes our experimental �ndings. The �rst row for each
platform, in italic, represents the baseline policy considering necessary inter-
action with objects passed to their runtime environment by default. There-
fore, the baseline policy is naturally at the level of module (restricting any
access to node modules) and API calls (controlling accesses to the passed
objects). These policies require no involvement from app developers or users.
For example, the baseline policy for IFTTT represents the policy intended by
IFTTT for all apps.

The other rows explore advanced policies. To illustrate the diversity,
we have selected cases that require di�erent levels of granularity in policy
speci�cation, i.e., module, API, value and context (the latter is speci�c to
Node-RED). The table displays the �nest level of granularity needed to spec-
ify the policy for a case. For example, a value-level policy is also an API- and
module-level policy. For each case, we report the name, the speci�cation of
code/�ow behavior, the granularity of the desired security policy, the exe-
cution time overhead of the monitored secure case in milliseconds, and the
explanation of an example attack blocked by SandTrap. Our performance
evaluation was conducted on a macOS machine with a 2.4 GHz Quad-Core
Intel Core i5 processor and 16 GB RAM.

Policies Recall that SandTrap generates policies at module-, API-, value-,
and context-levels. At the module-level, the baseline isolation policy is that
require is unavailable. At the API-level, the baseline policy is allowlisting
only the APIs pertaining to a given piece of code (in IFTTT and Zapier) or
a node (in Node-RED). At the context-level, the baseline policy is an iso-
lated context. Thus, only value-level policies need to be tuned when they are
desired.

Given the prior domain knowledge about use cases, we executed them
in the policy generation mode with di�erent inputs to attain an acceptable
level of code coverage. The main e�ort to determine the �nal policy is tuning
read/write/call access permissions. For each of the value-sensitive cases in
the table, the tuning amounted to modifying a single record (e.g., allowlisting
an email address). For advanced value-sensitive policies, the policy designer
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may also use parametric policies, which amounts to identifying the paramet-
ric APIs. Adding parameterized policies with reference to the ingredients for
IFTTT apps only needs a few minutes. For Zapier and Node-RED, because of
the presence of modules in code, the e�orts depend on the app complexity,
which is an interesting avenue for future studies. In our benchmark, the av-
erage of LoC for the �nal policies is 185 for IFTTT, 260 for Zapier, and 2650
for Node-RED.

We present the experiments with the platforms. In all cases, SandTrap
accepts the secure and rejects the insecure version.

6.1 IFTTT

We have experimented with both local and AWS Lambda deployments of
IFTTT, which are equivalent for the security evaluation of how �lter code is
processed. Since our modi�cations do not a�ect any network-related behav-
ior, we evaluate the performance on an IFTTT Node.js runtime environment
hosted locally on our machine.
Cases Recall from Section 2 that �lter code is used to “skip an action (or mul-
tiple actions), or change the values of the �elds the action will run with” [28].
Trigger and Action objects, along with the moment object to access trigger
time, are passed to the �lter code runtime (see Section 3.1). The baseline pol-
icy allows accessing Trigger and Action objects, while only allowing read-
only access for moment. The policy forbids require, making no Node.js module
accessible to �lter code. SandTrap thus prevents the prototype poisoning at-
tacks from Section 3.1, as re�ected in the �rst row of the table.

Use cases SkipAndroidMessage and SkipSendEmail skip an action during
certain hours according to the current user time. Any other manipulation,
such as setting the �elds of action service objects, is blocked by the monitor
to prevent attacks.

Use case Instagram-Twitter sets a �eld of the action object
(Twitter.postNewTweetWithImage.setPhotoUrl). Recall from Section 3.1
how URL attacks [8] attempt passing trigger data (Instagram photo URL
Instagram.anyNewPhotoByYou.Url by setting the action �eld to "https://

attacker.com/log?"+ encodeURIComponent(Instagram.anyNewPhotoByYou.Url).
SandTrap’s parametric policy mechanism is an excellent �t to represent this
type of dynamic value-based policies. This mechanism prevents deviation of
the setPhotoUrl function from the value of anyNewPhotoByYou.Url. SandTrap
similarly prevents tampering with the trigger data, i.e., the volume in the
Webhook-AndroidDevice use case.
Overhead The overhead for IFTTT means the additional time of executing
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the �lter code in the presence of SandTrap in comparison with executing
the �lter code without SandTrap. The reported numbers in the table are the
average overhead of 20 runs for each secure �lter code. The average time
overhead for all of the 25 di�erent apps is 4.10ms (where the maximum over-
head of all the executions of the apps is 6.35ms), which is tolerable given
that IFTTT apps are allowed up to 15 minutes to execute [29]. For reference,
we have also reimplemented IFTTT’s patch to the exploits from Section 3.1,
based on vm2. The experiments show that, compared to vm2, SandTrap only
adds 0.53ms and 0.42ms to the sandbox creation and the �lter code evalua-
tion stages, respectively (see Table 4). This is the performance price paid for
enabling SandTrap’s advanced policies compared to vm2.

6.2 Zapier

We evaluate the security and performance on a Zapier Node.js runtime en-
vironment hosted locally on our machine.
Cases Considering that built-in modules are available in Zapier runtime en-
vironment, a broad range of cases can be studied. We �rst demonstrate that
the attack from Section 3.2 is blocked by SandTrap with the baseline pol-
icy for Zapier. Indeed, loading modules is denied and calls to the APIs of
the node-fetch object are restricted. Further, we report on 10 use cases for
advanced policies in Table 5.

The StringFilter case extracts a piece of text by matching a regular expres-
sion. It does not require any node module. As a result, SandTrap blocks any
attempts for ex�ltrating data to the attacker’s server. The third case, OS-Info,
gets limited information provided by the os module where os.hostname() and
os.userInfo() are considered as secret. The policy restricts the function calls
of os accordingly.

The next two cases, ImageWatermark and TrelloChecklist, communicate
with Cloudinary and Trello’s servers via the node-fetch module, present in
the runtime environment. An attacker can ex�ltrate secret data (the image
link or the checklist data) using the same fetch function call. The value-level
policy distinguishes between the legitimate URL and the attacker’s server.
Therefore, SandTrap blocks fetch calls to any servers other than the speci�ed
Cloudinary and Trello URLs.
Overhead The overhead for Zapier means the di�erence between the time
elapsed evaluating code in Zapier and the version secured by SandTrap. The
average overhead for 20 runs of secure cases is reported in Table 5. The
overhead typically increases with the number of loaded modules. The aver-
age amount of overhead for these ten cases is 4.87ms. The case that loads all
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the built-in modules (AllBuiltinModules in Table 5) incurs less than 7ms over-
head, while no run in any of the cases adds more than 12ms to the execution
without SandTrap, which is tolerable.

6.3 Node-RED

We evaluate SandTrap on Node-RED �ows. The baseline policy does not
allow loading any modules and speci�es permitted function calls on RED, the
special object passed to each Node-RED node. The policy is su�cient to
protect nodes against the platform attacks in Section 4, such as the attacks
on the RED object or by using child_process module.

The Lowercase W node converts the input msg.payload to lower case let-
ters and sends the result object to the output. It does not require any inter-
action with the environment, resulting in the coarse-grained module-level
deny-all policy. In the attack scenario, the malicious node attempts to read
the content of /etc/passwd by calling fs.readFile, and send the sensitive data
to the attacker’s server via https.request. Because the policy does not allow
any modules to be required in the node, the monitor blocks the execution
once the �rst require is invoked.

The Dropbox case relies on libraries and thus requires an API-level pol-
icy. The Dropbox out W node loads https to establish a connection with the
user-de�ned Dropbox account to upload the speci�ed �le. We maliciously
altered the code to transmit the �le name and its content to the attacker’s
server via https.request.write. SandTrap rightfully blocks the ex�ltration
by restricting https.request.write calls, while https.request is prerequisite
for the node behavior.

In the email case, the Email W node sends a user-de�ned message from
one email address to another, both given by the user. The attacker mod-
i�es the node so that a copy of each message is transmitted to the at-
tacker’s email address by using the same sendMail function of the same
SMTP object. SandTrap blocks this because the value-level policy delimits
stream.Transform.write calls to the user-speci�ed recipient.

The last case uses the global and �ow contexts in its implementation, as
discussed in Section 4.3. The Water utility W �ow reads and updates the sta-
tus of water pumps and tanks using globally shared variables. Any tampering
with the values of those variables causes serious e�ects on the behavior of
the water supply network. We do not report on concrete nodes or running
times because they would depend on the choice of a malicious node. Note
that any node can maliciously alter the globally shared object in the origi-
nal Node-RED setting. SandTrap blocks any change on the global and �ow
contexts by default (i.e., the baseline policy), disallowing _context.global.set
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and _context.flow.set to be called.
Overhead Recall that the main use case of Node-RED is running it on the
user’s local machine, therefore the monitor only needs to scale to support
a single user. The memory overhead includes the monitor’s state to keep
track of primitive values and pointers. We de�ne the time overhead for the
Node-RED part as the added amount of elapsed time in the two phases of
node execution, i.e., loading and triggering, in comparison with the original
execution without the monitor. We report the average overhead of 20 runs
for each secure node. As reported Table 6 in Appendix 1.B, the overhead on
loading nodes is the dominant factor. Since all nodes in the Node-RED en-
vironment are deployed once at the starting stage, the time overhead is un-
noticeable to users while executing �ows after the nodes have been loaded
(less than 3ms). Although the overhead incurred for a node varies depending
on its complexity, none of the runs in our test cases introduced more than
100ms, including loading and triggering overheads. Compared to the signi�-
cant performance costs incurred by network communication and �le/device
access, the added amount is indeed negligible.

7 Related work

We discuss the most closely related work on JavaScript security and on se-
curing trigger-action platforms. A survey on isolating JavaScript [69] and
overviews on the security of IoT app platforms [7, 15] may navigate the
reader further.
Isolating JavaScriptThe origins of prototype poisoning in JavaScript can be
tracked to Ma�eis et al. [36, 37] and early language subsets like ADSafe [17]
and Caja [43]. These subsets have led to the ongoing work on Secure Ec-
maScript [42], discussed below. Arteau [6] identi�es a dozen Node.js libraries
susceptible to prototype poisoning by malicious JSON objects. Practical ap-
proaches to isolating JavaScript include isolation at the level of JavaScript en-
gines. Browsers ensure that JavaScript from di�erent pages and/or iframes
is run in its own isolated context. The isolated-vm [34] follows this path
for Node.js and leverages v8’s Isolate interface to provide fully isolated ex-
ecution contexts. However, like the Node.js vm module, isolated-vm and the
alternatives, such as Secure EcmaScript (SES) [42] and WebAssembly [25],
are all-or-nothing, providing no support for �ne-grained control of shared
entities. They can, however, serve as a starting point to build alternatives to
vm for providing isolation together with membranes [18, 41, 66, 67] to create
a secure sandbox.
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Some JavaScript isolation problems for TAPs are shared with untrusted
JavaScript in browsers, a long-standing problem [35, 69] occurring both in
web mashups [60] and browser extensions [31]. However, TAPs’ unique
�ow-based programming model [45] with unidirectional �ows from triggers
to the TAP and further to the actions induces di�erent isolation constrains
from client-side web programming.

Secure sandboxes Table 3 overviews the comparison to the most related
sandboxing approaches. The three membrane-based approaches NodeSen-
try [70], vm2 [63], and JSand [1] share the motivation of secure JavaScript
integration with SandTrap. NodeSentry and vm2 use vm to provide isolation,
while JSand uses SES. SES is based on a secure language subset, which en-
tails that JSand does not support full JavaScript inside its sandbox. This alone
makes JSand un�t for securing TAPs. For the vm-based approaches, it is fun-
damental that additional mechanisms are deployed to harden vm and prevent
breakouts [72]. Both SandTrap and vm2 do this, while it is unclear from the
publicly available information what steps are taken in NodeSentry to do the
same.

For TAPs, SandTrap, vm2 and NodeSentry di�er in �exibility of protec-
tion, how policies are expressed and generated as well as what policies can
be enforced. Of these approaches, vm2 has the most restricted policy language
limited to module and API levels using a module-based mocking mechanism.
NodeSentry uses full JavaScript tied to the interaction points of the proxies.
This is comparable to SandTrap, with the di�erence that SandTrap also sup-
ports policies expressed in a simpler structural way in addition to JavaScript
injection. Moreover, only SandTrap supports policy generation.

For securing Node-RED, four key features are needed and provided by
SandTrap: (i) full support for JavaScript and CommonJS, (ii) fully structural
proxying, i.e., support for cross-domain prototype hierarchy manipulation,
(iii) �ne-grained and �exible access control on shared contexts, and (iv) proxy
control. The other approaches do not meet these demands; none of the ap-
proaches support local object views or proxy control needed in the presence
of misbehaving legacy apps and apps that use the vm module. Further, vm2
neither supports cross-domain modi�cation of prototype hierarchies nor

�ne-grained access control. How NodeSentry handles the former remains
unclear.

BreakApp [71] provides compartmentalization primitives at the process-
and language-level to secure third-party Node.js modules at the boundaries.
It enforces security policies from allow/denylisting modules to restricting
communication between processes. BreakApp’s process-level compartmen-
talization introduces I/O between compartments, which both require adapta-

48



7. Related work

To
ol

Is
ol
at
io
n

Po
li
cy

ty
pe

Po
li
cy

ge
ne

ra
ti
on

Fu
ll

Ja
va

Sc
ri
pt

an
d
C
JS

su
pp

or
t

B
re
ak

ou
ts

ad
dr
es
se
d

Lo
ca
l

ob
je
ct

vi
ew

s

Pr
ox

y
co

nt
ro
l

C
on

tr
ol
le
d

cr
os
s-
do

m
ai
n

pr
ot
ot
yp

e
m
od

i�
ca
ti
on

Fi
ne

-g
ra
in
ed

ac
ce
ss

co
nt
ro
l

vm
2

[6
3]

vm
+

pr
ox

y
m

em
br

an
es

M
od

ul
e

m
oc

ki
ng

an
d

A
PI

le
ve

lJ
av

aS
cr

ip
ti

nj
ec

tio
n

5
X

X
5

5
5

5

JS
an

d
[1

]
SE

S
+

pr
ox

y
m

em
br

an
es

Ja
va

Sc
rip

ti
nj

ec
tio

n
vi

a
pr

ox
y

tra
ps

5
5

?
5

5
5

By
m

an
ua

lc
od

in
g

N
od

eS
en

tr
y

[7
0]

vm
+

Va
n

Cu
ts

em
m

em
br

an
es

Ja
va

Sc
rip

ti
nj

ec
tio

n
vi

a
pr

ox
y

tra
ps

5
X

?
5

5
5

By
m

an
ua

lc
od

in
g

Sa
nd

Tr
ap

vm
+

pr
ox

y
m

em
br

an
es

Po
lic

y
la

ng
ua

ge
w

ith
Ja

va
Sc

rip
ti

nj
ec

tio
n,

m
od

ul
e

al
lo

w
lis

tin
g

X
X

X
X

X
X

X

Ta
bl
e
3:

Sa
nd

bo
xe

si
n

co
m

pa
ris

on
.

49



1. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

tion to Node.js’ asynchronous concurrency model and entails a toll on perfor-
mance. Finally, BreakApp focuses on the automation of compartmentaliza-
tion but does not automate the generation of policies. Ferreira et al. [23] pro-
pose a lightweight permission system to enforce least-privilege principle at
Node.js packages level at runtime, restricting access to security-critical APIs
and resources. This work shares some of our motivations, but it does not
enforce access control policies at the context and value levels. Pyronia [39]
is a �ne-grained access control system for IoT applications restricting access
at the function-level via runtime and kernel modi�cations. To detect access
to sensitive resources, Pyronia leverages OS-level techniques such as system
call interposition and stack inspection. By contrast, SandTrap implements
language-level isolation to prevent access to sensitive resources at di�erent
levels of granularity.
Node.js security Empirical studies on the security of Node.js show that the
trust model is brittle, and security risks may arise from the (chain of) inclu-
sion of vulnerable/malicious libraries in Node.js modules. Staicu et al. [64]
study the prevalence of command injection vulnerabilities via eval and exec

constructs and �nd that thousands of modules can be vulnerable. Similarly,
Zimmermann et al. [75] study the potential for running vulnerable/malicious
code due to third-party dependencies to �nd that individual packages could
impact large parts of the entire Node.js ecosystem. Section 4 empirically con-
�rms that similar issues apply to the Node-RED ecosystem, motivating the
need for SandTrap.
Securing trigger-action platforms Several approaches track the �ow of
information in TAPs. Surbatovich et al. [65] present an empirical study of
IFTTT apps and categorize them with respect to potential security and in-
tegrity violations. FlowFence [21] dynamically enforces information �ow
control (IFC) in IoT apps. The �ows considered by FlowFence are the ones
among Quarantined Modules (QMs). QMs are pieces of code (selected by the
developer) that run in a sandbox. Saint by Celik et al. [13] utilizes static data
�ow analysis on an app’s intermediate representation to track information
�ows from sensitive sources to external sinks. IoTGuard [14] is a monitor for
enforcing security policies written in the IoTGuard policy language. Security
policies describe valid transitions in an IoT app execution. Bastys et al. [8, 9]
study attacks by malicious app makers in IFTTT and Zapier but do not focus
on JavaScript sandbox breakouts. They develop dynamic and static IFC in
IoT apps and report on an empirical study to estimate to what extent IFTTT
apps manipulate sensitive information of users. Wang et al. [73] develop
NLP-based methods to infer information �ows in trigger-action platforms
and check cross-app interaction via model checking. Alpernas et al. [3] pro-
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8. Conclusion

pose dynamic IFC for serverless computing arguing for termination-sensitive
noninterference as a suitable security property. They implement coarse-
grained IFC for JavaScript targeting AWS Lambda and OpenWhisk server-
less platforms. Recently, Datta et al [19] proposed a practical approach to se-
curing serverless platforms through auditing of network-layer information
�ow. Notably, their approach controls function behavior without code mod-
i�cation by proxying network requests and propagating taint labels across
network �ows.

SandTrap is based on access control rather than IFC. Hence, these works
are complementary, focusing on information �ow after access is granted.
While IFC supports rich dependency policies, it is hard to track informa-
tion �ow in JavaScript without breaking soundness or giving up precision,
e.g., due to the “No Sensitive Upgrade” implications [26]. Moreover, IFC for
Node-RED poses challenges of tracking information across Node.js modules.
Node-RED security Ancona et al. [5] investigate runtime monitoring of
parametric trace expressions to check correct usage of API functions in
Node-RED. Trace expressions allow for rich policies, including temporal pat-
terns over sequences of API calls. By contrast, SandTrap supports both coarse
and �ne access control granularity related to JavaScript modules, libraries,
and contexts. Focusing more on end users and less on developers, Kleinfeld
et al. [33] discuss an extension of Node-RED called glue.things. The goal is to
make Node-RED easier to use by prede�ned trigger and action nodes. Clerissi
et al. [16] use UML models to generate and test Node-RED �ows. Blackstock
and Lea [11] propose a distributed runtime for Node-RED apps such that
�ows can be hosted on various platforms, thus optimizing for computing
resources across the network. Schreckling et al. [62] propose COMPOSE, a
framework for �ne-grained static and dynamic enforcement that integrates
JSFlow [26], an information-�ow tracker for JavaScript. While COMPOSE
focuses on data-level granularity, SandTrap supports module- and API-level
granularity.

8 Conclusion

We have presented a security analysis of JavaScript-driven TAPs, with our
�ndings spanning from identifying exploitable vulnerabilities in the mod-
ern platforms to tackling the root of the problems with their sandboxing.
We have developed SandTrap, a secure yet �exible monitor for JavaScript,
supporting �ne-grained module-, API-, value-, and context-level policies
and facilitating their generation. SandTrap advances the state of the art
in JavaScript sandboxing by a novel approach that securely combines the
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Node.js vm module with fully structural proxy-based two-sided membranes to
enforce �ne-grained access control policies. We have demonstrated the util-
ity of SandTrap by showing how it can secure IFTTT, Zapier, and Node-RED
apps with tolerable performance overhead.
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Appendix

1.A Node-RED empirical study

We provide the details on trust propagation, present a security labeling of
sources and sinks, and discuss exploiting shared resources.

1.A.1 Trust propagation

Figures 5a and 5b illustrate the distribution of JavaScript �les and lines of
code from our dataset of 2122 packages. Our analysis shows that packages
may contain complex JavaScript code. For example, we �nd nodes with 329
JavaScript �les containing a total of 129,231 lines of code.

To understand the prevalence of sensitive APIs, we study the libraries in-
cluded in Node-RED packages and �rst-party modules used in require state-
ments. On average, a package has 1.85 direct dependencies on other Node.js
packages, while Node-RED nodes do not typically use service-speci�c APIs
(see Figure 5c and 6a). Speci�c services appear in the 23rd and 25th most
popular entries, respectively aws-sdk and node-red. We draw the same con-
clusion while analyzing �rst-party modules included in require statements
(Figure 6b). Popular package dependencies relate to resources such as HTTP
requests (request) and other developer tools. This indicates that Node-RED
is mainly focused on low-level customizable automation. More importantly,
Node-RED provides access to powerful APIs that deal with the �lesystem
(fs), HTTP requests (request), OS features (os), thus enabling a malicious de-
veloper to compromise the security of users and devices.

1.A.2 Security labeling

Following the approach used by Bastys et al. [8] for IFTTT, we estimate the
impact of attacks on Node-RED. We manually inspect the sources and sinks
of the top 100 Node-RED packages to assign a security labeling.
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(a)

(b)

(c)

Figure 5: (a) JavaScript �les per Node-RED package; (b) JavaScript lines of
code (LoC) per Node-RED package; (c) Node.js dependencies per Node-RED
package.

We label a node’s sources as either private, public, or available represent-
ing node inputs with public, private, and available information. The latter
contains public information, but the availability of this information is valu-
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1.A. Node-RED empirical study

(a) (b)

Figure 6: (a) Top 25 Node.js dependencies in Node-RED; (b) Top 25 require
modules in Node-RED.

able to the user. Similarly, we label sinks as either public, untrusted, or avail-
able. Available sinks are those that will cause availability issues whenever
the data is not delivered through the sink. Untrusted sinks may a�ect the
integrity of the output, while public sinks can communicate with the public
and can a�ect privacy. The labeling of sinks is cumulative; namely, a public
sink is untrusted and available, and an untrusted sink is also available.

We also categorize node sources and sinks to understand the target do-
mains of Node-RED applications, as well as to estimate the prevalence of
attacks in these domains. While IFTTT already provides such categoriza-
tion, we manually explore Node-RED nodes to classify their target domains.
We assign nodes to categories by a series of steps: (i) reading the nodes’ doc-
umentation, (ii) running the node in a �ow, and (iii) manually reading the
code de�ning the node. Figure 7a reports the categorization of Node-RED
nodes in our dataset.

We conduct an empirical analysis of 408 node de�nitions for the top 100
Node-RED packages. We follow a set of heuristics to assign labels to nodes in
a conservative manner. For example, a node that sends output to a Raspberry
Pi’s pins can be used in driving electronics like LEDs and motors; hence we
label the sink as untrusted. These output pins can also be used for communi-
cating with Internet-connected devices to ex�ltrate data; hence we label the
sink as public. Other general guidelines include labeling output to local as
available, input from local as private, and databases as private and untrusted.
Figures 7b and 7c illustrate our labeling for sources and sinks. Compared to
the results of Bastys et al. [8] for IFTTT, we observe that Node-RED targets
custom-built �ows for nodes with low-level functionality. In fact, the major-
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(a)

(b)

(c)

Figure 7: (a) Categorization of Node-RED sources and sinks; (b) Security
labeling for Node-RED sources; (c) Security labeling for Node-RED sinks.
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ity of nodes in our categorization belongs to the “developer tools” and “smart
hubs & systems” categories.

Our analysis covers the top 100 packages, representing only 4.71% of all
Node-RED packages and 7.67% percent of all node de�nitions (from 5316 to-
tal). This labeling completely covers 642 �ows (54.36% of the 1181 total �ows
after pruning invalid �ows), which we consider further in our experiment.
We �nd possible security violations by tracing the graph for the descendants
of source nodes and looking for the labels of these sink node descendants.

We �nd that privacy violations (private sources to public sinks) may oc-
cur in 70.40% of �ows, integrity violations (any sources to available sinks)
may occur in 76.46%, and availability violations (available sources to available
sinks) may occur in 1.71%. A similar experiment on a dataset from IFTTT re-
vealed 30% privacy violations, 98% integrity violations, and 0.5% availability
violations [8]. The larger number of privacy violations in Node-RED re�ects
the power of malicious developers to ex�ltrate private information.

1.A.3 Exploiting shared resources

Another usage of the context feature is to share resources such as common
libraries. In addition to integrity and availability concerns, this pattern opens
up possibilities for ex�ltration of private data. An attacker can encapsulate
the library such that it collects any sensitive information sent to this library.

For example, the �ow “btsimonh’s node-opencv motion detection (2017-
11-02)” targets Raspberry Pi to implement a video stream for motion detec-
tion W. It feeds the image frames into the computer vision library openCV,
which is imported in the code snippet below:

var require = global.get(’require’);
...
// look for globally installed opencv
var cv = require.main.require(’opencv’);
if (!cv){
// look for locally installed opencv
cv = require(’opencv’);

}
...
var cvdesc = Object.keys(cv);
node.send([null, {payload:cvdesc}]);
flow.set(’cv’, cv);

The code contains two instances of disruptable libraries, require and
opencv, which can be exploited by an attacker with access to the Flow or
Global contexts. We �nd other �ows that are subject to similar vulnerabili-
ties W, W. We also �nd similar vulnerabilities in Node-RED nodes. For ex-
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1. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

ample, the EmotivBCI Facial Expression node W outputs the values of the
trained detections originating from EMOTIV wearable brain sensing tech-
nology.

1.B Evaluation

Tables 4, 5, and 6 summarize the details of the evaluation of SandTrap in dif-
ferent use cases for IFTTT, Zapier, and Node-RED, respectively. In all cases,
SandTrap accepts the secure version and rejects the insecure one. The time
overhead is tolerable while enhancing the platforms with SandTrap.

1.B.1 IFTTT

We discuss 10 out of 25 cases of our IFTTT benchmark, pairs of benign and
malicious �lter code instances, and show how their executions are secured
by SandTrap. In each case, we measure the time overhead compared to the
original execution (without any monitor) and the time overhead compared
to the deployment of IFTTT with vm2.

Use cases SkipTodoistCreateTask and SkipNoti�cation are instances of �l-
ter code that skip an action during a time indicated by the user. Thus, they
do not need loading modules. The baseline policy for IFTTT, i.e., disallowing
any require calls, protects the user from ex�ltration attacks through network.

The next three cases, SkipAndroidMessage, SkipSendEmail, and Trello-
SlackAndO�ce365Mail also skip an action with respect to some conditions.
Since �lter code enables modifying all �elds of action services, an attacker
can manipulate them instead of skipping the actions during the speci�ed
time. For example, private information can be sent to the attacker via set-
ter functions, which are provided by the platform. The user’s informa-
tion will be sent to the attacker’s phone or email address unnoticeably,
while the user thinks the actions are skipped as speci�ed. In the Trello-
SlackAndO�ce365Mail case, two action services are available and thus any
modi�cation to the �elds of both is possible in the �lter code. For �lter code
that only skips action(s), the policy should only permit skip calls; thus any
invocation to the setter functions must be blocked.

The remaining use cases represent other patterns of �lter code, in which
values are passed to action services using the setter functions. For ex-
ample, Instagram-Twitter and Telegram-Tumblr call setPhotoURL with the
URL received from the trigger service. To make sure that the URL is not
changed in the �lter code, the policy should be value-sensitive. Thanks to
the feature of parameterized policy in SandTrap, the user can specify dy-
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1. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

namic policies with respect to the trigger data (e.g., the URL is accessible
by this.GetPolicyParameter(‘SourceUrl’)). The e�ort for tuning the policies
is minimal; the call policy of the setter function should be updated to a
JavaScript function that veri�es the passed argument to be consistent with
the trigger data.

Because the �lter code cannot load any node modules, the time over-
head is relatively constant (on average 4.10ms), which is tolerable given that
IFTTT apps are allowed up to 15 minutes to execute. We also compare how
vm2 and SandTrap a�ect the execution time of the use cases and report on the
added time by SandTrap compared to vm2. We split the time overhead into
two stages: sandbox creation and �lter code evaluation. The di�erence for
each stage is always less than 1ms. Since IFTTT employs vm2 already, it seems
reasonable to upgrade the �lter code evaluation module to employ SandTrap,
thus bringing in a �ne-grained security mechanism with negligible runtime
overhead.

1.B.2 Zapier

We executed 10 di�erent pairs of secure and insecure Zapier code under
SandTrap. Unlike IFTTT, a list of node modules is available for the user code
including the built-in modules. The �rst two cases SimpleOutput and String-
Filter do not require any node module to run; hence a policy that denies load-
ing any module is su�cient. Use case AllBuiltinModules (loading all built-in
modules) is a crafted example to show that the time overhead incurred by
SandTrap is tolerable even if the user code requires all built-in modules.

The two cases Url-and-http and Os-info need interaction with speci�c
node modules (e.g., url, http and os) and their APIs. Hence, any other API
calls like os.userInfo() must be stopped by the monitor. An auto-generated
policy, without any additional e�ort, that lists all legal APIs of each node
module is su�cient for SandTrap to enforce the desired security.

Use cases SetStoreClient and FetchGet employ the accessible objects
StoreClient and node-fetch, respectively. These are the objects directly
passed to the Zapier runtime environment to enable users to communicate
data through network via the node-fetch object. Malicious code might ex�l-
trate sensitive data or a�ect the integrity of data stored in StoreClient, a util-
ity to store and retrieve data. Similarly, the last three use cases demonstrate
value-dependent policies. The policy for the use case Fs-readdirsync allows
listing �les in the current directory or nested ones, but it blocks browsing
other directories like the parent directory, which in the Zapier environment
contains the source code of the runtime. The cases ImageWatermark and
TrelloChecklist are examples that use the node-fetch module to communicate
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1. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

through HTTP requests. Any requests except for the ones needed for the
functionality of the code should not be listed in the policies.

1.B.3 Node-RED

We evaluate the security and performance of SandTrap on a set of 20
Node-RED �ows, 10 �ows with secure nodes and 10 �ows with malicious
nodes.

For diversity, we have selected �ows with nodes from both popular and
less popular packages in terms of the number of downloads. Table 6 sum-
marizes our experimental �ndings. Each row represents the use case of a
�ow, which is instantiated to a �ow with secure nodes and a �ow with a ma-
licious node. For each use case, we report the �ow name, the speci�cation
of �ow behavior, the package and node identi�er of the essential node, the
number of package downloads, the granularity of the desired security policy
(module-, API-, value-, or context-level), execution time overhead of the se-
cure �ow under the monitor in milliseconds, and the explanation of attack
implemented by the malicious node and blocked by the monitor.

We brie�y discuss experiments for each use case. The nodes in the �rst
two cases, Lowercase and Thermostat, should be fully isolated as they do not
need to interact with the environment. Therefore, the right policy is the
coarse-grained module-level deny-all policy (which SandTrap implements
by making require unavailable). The Lowercase W node converts the input
msg.payload to lower case and sends the result object to the output. In the at-
tack scenario, the malicious node attempts to read the content of /etc/passwd
by calling fs.readFile, and send the sensitive data to the attacker’s server via
https.request. Because the policy does not allow any libraries to get required
in the node, the monitor blocks the execution once the �rst require is called.

In the thermostat use case, the Thermostat W node gets a temperature
input and switches the heater status depending on the de�ned low and high
limits. Similar to the lowercase node, it does not require any node modules
by nature. The attack ex�ltrates the input temperature and the heater status,
which we consider sensitive information. The monitor prevents the leakage
because https module is not in the baseline allowlist policy.

The File and Dropbox cases rely on libraries and thus require API-level
policies. The FileW node, one of the core nodes of Node-RED, writes the con-
tent of the input message msg.payload to a �le speci�ed by the user. Therefore,
the fs module should be allowed by the policy, and it is indeed inferred by
SandTrap’s policy auto-generation feature. As an attack scenario, we added
a single line fs.rmdir("./", {recursive: true}) that removes the current di-
rectory, i.e., the Node-RED directory. The monitor rightfully blocks the exe-
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1. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

cution of the malicious node because the node policy introduces a subset of
allowed fs functions, where fs.rmdir is not included.

Similarly, the Dropbox out W node requires https to establish a connec-
tion with the user-de�ned Dropbox account and upload the speci�ed �le. We
maliciously altered the code to transmit the �le name and its content to the
attacker’s server via https.request.write. SandTrap blocks the ex�ltration by
restricting https.request.write calls, while https.request is a prerequisite for
the node behavior.

In the calendar use case, the users add events to their Google calendar.
A malicious modi�cation of the addEvent W allows passing the event data
to the attacker’s server. Note that the node demands communication with
the Google API via the same function calls. Value-dependent policies enable
us to include a �ne-grained allowlist policy that restricts https.request from
connecting to servers other than "www.googleapis.com". As in the other cases,
SandTrap accepts the secure version and rejects the insecure one.

In the email case, the Email W node sends a user-de�ned message from
one email address to another, where both are provided by the user. The at-
tacker modi�es the node so that a copy of each message is transmitted to the
attacker’s email address by using the same sendMail function of the same SMTP

object. SandTrap blocks this attack because the value-level policy delimits
stream.Transform.write calls to the user-speci�ed recipient.

The Earthquake W and Baby monitor W �ows employ http request W,
a general-purpose core node of Node-RED for setting up HTTP communi-
cation channels. The earthquake �ow retrieves a list of signi�cant earth-
quakes from the US Geological Survey website and outputs noti�cations for
the ones with magnitudes greater than seven. A malicious node maker ma-
nipulates the user-de�ned URL in the source code of the node to perform
an integrity attack. In the Baby monitor case, the node sends a request to an
SMS server when an emergency occurs to the baby. The attacker is able to act
as a person-in-the-middle, read the sensitive data, and falsify the status. We
address this by making the call attribute of url.parse function in the policy
value-dependent, which enforces the integrity of the URL.

The last cases use the global and �ow contexts in their implementation,
as discussed in Section 4.3. The Water utility W �ow reads and updates the
status of water pumps and tanks using globally shared variables. Any tam-
pering with the values of those variables may cause serious e�ects on the
behavior of the water supply network. The Motion detection W �ow utilizes
the opencv [57] module to enable a Raspberry Pi process images taken from
the environment. To load opencv in a Function node, it obtains the require ob-
ject from the global context. We do not report on concrete nodes or running
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1.B. Evaluation

times because they would depend on the choice of a malicious node. Note
that any node can maliciously alter the globally shared object in the original
Node-RED setting. SandTrap blocks any change on the global and �ow con-
texts by default, disallowing _context.global.set and _context.flow.set to be
called.

The overhead columns of the table present the additional amount of
elapsed time in the two phases of node execution, i.e., loading and trigger-
ing, in comparison with the original execution without the monitor. We re-
port the average overhead of 20 runs for each secure node. Note that the
Earthquake and Baby monitor �ows use the same http request node, which
explains the same reported overhead (9.33ms and 2.10ms for loading and trig-
gering the node). The time overhead is unnoticeable to users in the setting
of TAPs where the signi�cant performance costs are incurred by network
communication and �le/device access.
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2. Securing Node-RED Applications

Abstract. Trigger-Action Platforms (TAPs) play a vital role in ful�ll-
ing the promise of the Internet of Things (IoT) by seamlessly con-

necting otherwise unconnected devices and services. While enabling
novel and exciting applications across a variety of services, security
and privacy issues must be taken into consideration because TAPs es-
sentially act as persons-in-the-middle between trigger and action ser-
vices. The issue is further aggravated since the triggers and actions on
TAPs are mostly provided by third parties extending the trust beyond
the platform providers.
Node-RED, an open-source JavaScript-driven TAP, provides the oppor-
tunity for users to e�ortlessly employ and link nodes via a graphical
user interface. Being built upon Node.js, third-party developers can ex-
tend the platform’s functionality through publishing nodes and their
wirings, known as �ows.
This paper proposes an essential model for Node-RED, suitable to rea-
son about nodes and �ows, be they benign, vulnerable, or malicious.
We expand on attacks discovered in recent work, ranging from ex�l-
trating data from unsuspecting users to taking over the entire platform
by misusing sensitive APIs within nodes. We present a formalization of
a runtime monitoring framework for a core language that soundly and
transparently enforces �ne-grained allowlist policies at module-, API-,
value-, and context-level. We introduce the monitoring framework for
Node-RED that isolates nodes while permitting them to communicate
via well-de�ned API calls complying with the policy speci�ed for each
node.

74



1 Introduction

Trigger-Action Platforms (TAPs) play a vital role in ful�lling the promise
of the Internet of Things (IoT). TAPs empower users by seamlessly con-
necting otherwise unconnected trigger and action services. Popular TAPs
like IFTTT [23] and Zapier [56], as well as open-source alternatives like
Node-RED [35], o�er users the ability to operate simple trigger-action appli-
cations (or, for short, apps) such as “Tweet your Instagrams as native photos
on Twitter” W, “Get emails via Gmail with new �les added to Dropbox” W,
and “Covid-19 live Ticker via Twitter” W.

A TAP is e�ectively a “person-in-the-middle” between trigger and action
services. While greatly bene�ting from the possibility of apps to run third-
party code, TAPs are subject to critical security and privacy concerns. At-
tacks by third-party app makers on the platform may lead to compromising
the integrated trigger and action services. Figure 1 illustrates how a mali-
cious app deployed by a user on a TAP like Node-RED can compromise the
associated trigger and action services, another installed app, and the plat-
form [2]. Depending on the security con�guration of the TAP’s deployment,
the attacker may also compromise the underlying system.

In contrast to proprietary centralized platforms such as IFTTT and Za-
pier, Node-RED can be entirely run on a user’s own server. Node-RED is an
open-source platform built on top of Node.js, enabling users to inspect and

Trigger ActionApp

App

Malicious app maker

TAP

Trigger Action

Figure 1: Threat model of a malicious app deployed on a single-user TAP [2].
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2. Securing Node-RED Applications

customize the source code of the platform and the apps as desired. Moreover,
Node-RED relies on JavaScript packages from third parties to facilitate the
integration of new functionalities. In fact, Node.js nodes are the basic build-
ing blocks of Node-RED apps (also named as �ows), freely available on the
Node Package Manager (NPM) [42] and automatically added to the Node-
RED Library [40]. Node-RED is inspectable and thus can be veri�ed by users
in terms of the platform’s correctness and security. Third-party apps inte-
grated into the underlying platform, however, can still threaten the security
of the users and the entire system.

The starting point of this paper is the recently identi�ed attacks on
Node-RED by malicious nodes, ranging from ex�ltrating users’ sensitive data
to taking over the platform and the host system [2]. A Node-RED �ow is
technically a static representation of how nodes are wired together; there-
fore, a malicious node controlled by an attacker can be employed in any user-
de�ned or third-party �ows, resulting in malicious behaviors.

This observation motivates the need for controlling APIs invoked in
nodes to ensure the security of the platform and the users. Although the
enforcement mechanism must guarantee security, it also should restrict ac-
cess only if it is against the node’s policy, according to the least privilege
principle [46]. Only the APIs which are necessary for the intended function-
ality should be accessible in a node; thus, if none of the APIs of a module
are required, loading of the module must be denied. In some cases, the inter-
action through APIs needs to be value-sensitive when an API call should be
permitted only with a list of de�ned arguments, for instance, when it comes
to allowing a node to make an HTTPS request to a speci�c trusted domain.
Furthermore, Node-RED makes use of both message passing and the shared
context [39] to exchange information between nodes and �ows, and both
types of exchange need to be secured. Previous work proposes SandTrap [2],
a runtime monitor for JavaScript-driven TAPs. However, SandTrap’s security
guarantees are argued only informally.

Motivated by SandTrap, this work is a step toward formally understand-
ing how to monitor Node-RED apps. We present a sound and transparent
monitoring framework for Node-RED for enforcing �ne-grained allowlist
policies at module-, API-, value-, and context-level. In the following, we
discuss Node-RED along with overviewing platform- and app-level vulner-
abilities and attacks (Section 2); propose an essential model for Node-RED,
suitable to reason about nodes and �ows, be they benign, vulnerable, or ma-
licious; and present a monitoring framework to express and enforce �ne-
grained security policies, proving its soundness and transparency (Section 3).
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2. Node-RED Vulnerabilities

global
context

Flow Flow

Node Node
message

Node-RED

Nodeflow
context

Node

Node.js

Figure 2: Node-RED architecture [2].

2 Node-RED Vulnerabilities

Node-RED is “a programming tool for wiring together hardware devices,
APIs and online services”, which provides a way of “low-code programming
for event-driven applications” [35]. As an open-source platform, Node-RED
is mainly targeted for deployment as a single-user platform, although it is
also available on the IBM Cloud platform [22]. We overview the architec-
ture of Node-RED (Section 2.1) and explain two types of vulnerabilities with
respect to our attacker model, i.e., malicious app makers: (i) platform-level
isolation vulnerabilities (Section 2.2) and (ii) application-level context vulner-
abilities (Section 2.3). Our discussion expands the condensed presentation of
these vulnerabilities from previous work [2].

2.1 Node-RED platform

Figure 2 illustrates the Node-RED architecture, consisting of a collection of
apps, known as �ows, linking components called nodes. The Node-RED run-
time is built on the Node.js environment and can run multiple �ows simul-
taneously. It supports inter-node and inter-�ow communication via direct
messages through the wiring between nodes in a �ow, while the �ow and
the global contexts [39] are alternative communication channels between the
nodes of a �ow and across the nodes of di�erent �ows, respectively.

A node is a reactive Node.js application triggered by receiving messages
on at most one input port (dubbed source) and sending the results of (side-
e�ectful) computations on output ports (dubbed sinks), which can be poten-
tially multiple, unlike the input port. Figure 3 illustrates the code structure of
a Node-RED node. A special type of node without sources and sinks, called
con�guration node, is used for sharing con�guration data, such as login cre-
dentials, between multiple nodes.
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2. Securing Node-RED Applications

module.exports = function(RED){
function NodeName(config){
RED.nodes.createNode(this, config);
var node = this;
// register a callback when a message is received...
node.on("input", function(msg){
... // functionality of node
node.send(msg); // or an array of messages for multiple outputs

});
}
RED.nodes.registerType("type-name", NodeName);

}

Figure 3: Node-RED node structure.

A �ow is a representation of nodes connected together. End users
can either create their own �ows on the platform’s environment or de-
ploy existing �ows provided by the o�cial Node-RED catalog [32] and by
third parties [40]. As shown in Figure 4, �ows are JSON �les wiring node
sinks to node sources in a graph of nodes where messages, represented by
JavaScript objects, are passed between. Multiple messages can be sent by any
given node, although instances of a single message can be repeatedly sent to
multiple nodes as well. To facilitate end-user programming [54], �ows can
be shown visually via a graphical user interface and deployed in a push-
button fashion. As an example, Figure 5 demonstrates a �ow that retrieves
earthquake data for logging and notifying the user whenever the magnitude
exceeds a threshold. Speci�cally, the �ow retrieves data of the recent quakes
(either periodically or by clicking on the button), parses the given CSV �le,
and shows the data (stored in msg.payload) to the user. For each magnitude
value exceeding the speci�ed threshold, it also branches and the payload
triggers an alarm noti�cation.

In Node-RED, contexts provide a shared communication channel between
di�erent nodes without using the explicit messages that pass through a
�ow [39]. Therefore the node wiring visible in the user interface re�ects only
a part of the information �ows that are possible in the �ow. It introduces an
implicit channel that is not visible to the user via the graphical interface of a
�ow. Node-RED de�nes three scope levels for the contexts: (i) Node, only vis-
ible to the node that sets the value, (ii) Flow, visible to all nodes on the same
�ow, and (iii) Global, visible to all nodes on any �ow. For instance, a sensor
node may regularly update new values in one �ow, while another �ow may
return the most recent value via HTTP. By storing the sensor reading in the
global shared context, the data is accessible for the HTTP �ow to return.
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2. Node-RED Vulnerabilities

[ // list of nodes
{ // node 0
/* parameters of interest in every node */
id: NODE0, // unique ID of node, string
type: function // type of node, string
wires: [ // array of array of strings
[ NODE1 ], // first output port to node 1
[ NODE2, NODE3 ] // second output port to nodes 2 and 3

],
... // other parameters

},
... // other nodes

]

Figure 4: Node-RED �ow structure.

Figure 5: Earthquake noti�cation and logging W.

Node-RED security relies on the platform running on a trusted network,
ensuring that users’ sensitive data is processed in an environment controlled
by the users. The o�cial documentation [36] also includes programming
patterns for securing Node-RED apps. These patterns include basic authen-
tication mechanisms to control access to nodes and wires. The o�cial node
Function W runs user-provided code in a vm sandbox [41], suggesting that it
may protect the user from unauthorized access. However, the vm’s sandbox
“is not a security mechanism” [41], and there are known breakouts [25].

TAPs generally lack the means to specify user’s security policies [8]. For-
tunately, Node-RED’s user-centric setting enables us to interpret intended
security policies. In fact, Node-RED’s GUI for �ows provides an intuitive
way to interpret top-level user policies; it is reasonable to consider that the
user endorses the �ow of information between the nodes connected by the
graph that depicts a �ow in the GUI. For instance, the Earthquake noti�ca-
tion �ow in Figure 5 implies a policy where noti�cation data may only �ow
to the noti�cation message. Only the Inject node can trigger updates. The
policy allows no other node (from any �ow) to tamper with the Recent Quakes

node, preventing any malicious node from corrupting the source of quake
information. Such an interpretation provides us with a baseline security pol-
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Figure 6: Node-RED vulnerabilities: (a) Isolation vulnerabilities; (b) Context
vulnerabilities [2] .

icy. For more �ne-grained policies, e.g., the list of permitted URLs to retrieve
the recent quakes, it is reasonably presumed that the node developer designs
these advanced policies since they know the precise speci�cation of the node.
The provided policies can later be vetted by the platform and the user, be-
fore deploying the node. SandTrap [2] o�ers a policy generation mechanism
to aid developers in designing the policies, enabling both baseline and ad-
vanced policies customized by developers or users to express �ne-grained
app-speci�c security goals.

In the following, we discuss Node-RED attacks and vulnerabilities that
motivate enriching the policy mechanism with di�erent granularity levels.
These policies will further be formalized in Section 3.

2.2 Platform-level isolation vulnerabilities

While facilitating the integration and automation of di�erent services and
devices, due to imposing insu�cient restrictions on nodes, Node-RED is ex-
ploitable by malicious node makers. All APIs provided by the underlying
runtimes, Node-RED and Node.js, are accessible for node developers, as well
as the incoming messages within a �ow. As shown in Figure 6a, there are var-
ious attack scenarios for malicious nodes [2]. At the Node.js level, an attacker
can create a malicious Node-RED node including powerful Node.js libraries
like child_process, allowing the attacker to execute arbitrary shell commands
with exec, e.g., taking full control of the user’s system [43]. Restricting li-
brary access is laborious in Node-RED; while access to a sensitive library like
child_process is required for the functionality of Node-RED, attackers can ex-
ploit trust propagation due to transitive dependencies in Node.js [44, 57]. A
malicious node enables the attacker to compromise the con�dentiality and
integrity of sensitive data and libraries stored by other �ows in the global
context. A malicious node within a sensitive �ow may also indirectly read
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2. Node-RED Vulnerabilities

and modify sensitive data by manipulating the �ow context.
At the platform level, the main object in the Node-RED structure, named

RED [38], is also vulnerable. There are di�erent ways for a malicious node to
misuse the RED object, such as aborting the server (e.g., by RED.server._events

= null) or introducing a covert channel shared between multiple instances
of the node in di�erent �ows by modifying existing properties or adding new
properties to the RED object (like RED.dummy). Therefore, access control at the
level of modules and shared objects is necessary for Node-RED nodes.

On the other hand, a malicious node can directly manipulate incoming
messages resulting in accessing or tampering with the sensitive data. As
a subtle example of this scenario to invade users’ privacy, the o�cial Node-
RED email W can be modi�ed to send the email body to the original recipient
and also forward a copy of the message to an attacker’s address. The benign
code sets the sending options sendopts.to to contain only the address of the
intended recipient:

sendopts.to = node.name || msg.to; // comma separated list of addresses

It can be modi�ed to the following by a malicious node maker to include the
attacker’s address as well:

sendopts.to = (node.name || msg.to) + ", me@attacker.com";

In this example, we demonstrate that an attacker can alter the value that is
placed as the argument of an API call, which is necessary for the functionality
of the node, to steal sensitive information of the user without being noticed.
As a result, the combination of function identity and its arguments needs to
be considered in security checks. This attack motivates us to provide �ne-
grained access control at the level of APIs and their input parameters.

We refer the interested reader to other types of investigated vulnerabili-
ties in Node-RED [2], such as the impact of compromised package repository
and name squatting [57] attack. The latter is critical since the “type” of nodes
(what �ows use to identify them) is simply a string, which multiple packages
can possibly match. A �ow de�ned by a third party can include the attacker’s
malicious node unless the user inspects each and every node to verify that
there are no deviations from the expected “type” string.

The empirical study shows the implications of such attacks [2]: privacy
violations may occur in 70.40% of Node-RED �ows and integrity violations
in 76.46%. The vast number of privacy violations in Node-RED re�ects the
power of malicious developers to ex�ltrate private information.
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2. Securing Node-RED Applications

2.3 Application-level context vulnerabilities

Node-RED uses various levels of the shared context to exchange data across
nodes and �ows in an implicit manner. Figure 6b depicts the attack scenarios
to exploit vulnerabilities by reading and writing to libraries and variables
shared in the global and �ow contexts [2]. The Node context shares data
with the node itself; thus only the shared contexts at the levels of Flow and
Global are intriguing to investigate. Malicious nodes in these scenarios can
exploit other vulnerable Node-RED nodes, even if the platform is secured
against attacks in Section 2.2.

Several Node-RED core nodes [37] make use of the shared context
for their purposes, including the nodes executing any JavaScript function
(Function), triggering a �ow (Inject), generating text to �ll out a template
(Template), routing outgoing messages to branches of a �ow by evaluating a
set of rules (Switch), and modifying message properties and setting context
properties (Change). It is shown that more than 228 published �ows utilize
�ow or global context in at least one of the member nodes and more than
153 of the published Node-RED packages directly read from or modify the
shared context [2].

The main purpose of using the shared context is data communication
between nodes. Malicious operations on the shared data, such as tampering,
adding, or erasing, may lead to integrity and availability attacks, as well as to
disrupting the functionality entirely. As a real-world example, the Node-RED
�ow “Water Utility Complete Example” W is vulnerable considering misuse
of the Global context. Targeting SCADA systems, this �ow manages two
tanks and two pumps; the �rst pump pumps water from a well into the �rst
tank, and the second pump transfers water from the �rst to the second tank.
The status of the tanks are stored in globally shared variables as follows:
global.set("tank1Level", tank1Level);
global.set("tank1Start", tank1Start);
global.set("tank1Stop", tank1Stop);

Later, to determine whether a pump should start or stop, the �ow retrieves
the shared status from the Global context:
var tankLevel = global.get("tank1Level");
var pumpMode = global.get("pump1Mode");
var pumpStatus = global.get("pump1Status");
var tankStart = global.get("tank1Start");
var tankStop = global.get("tank1Stop");
if (pumpMode === true && pumpStatus === false && tankLevel <=

tankStart){
// message to start the pump

}
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else if (pumpMode === true && pumpStatus === true && tankLevel >=
tankStop){

// message to stop the pump
}

A malicious node installed by the user and deployed in the platform could
alter the context relating to the tank’s reading to either exhaust the water
�ow (never start) or cause physical damage through continuous pumping
(never stop).

One can also use the context feature to share resources such as common
libraries. In addition to integrity and availability concerns, this approach
opens up possibilities for ex�ltrating private data. An attacker can encap-
sulate a library to collect any sensitive information sent to the library. For
instance, by modifying the opencv shared library inside a malicious node, the
attacker can ex�ltrate private information of video streaming for motion de-
tection W. More details and examples of such vulnerabilities are also stud-
ied [2].

These vulnerabilities motivate the need for monitoring access control at
the level of context.

3 Formalization

Section 2 motivates the need for secure integration of untrusted code in gen-
eral and restricting node-to-node and node-to-environment communications
(i.e., between nodes, library functions, and contexts) for Node-RED in par-
ticular. To achieve this, we propose a runtime monitoring framework capa-
ble of enforcing allowlist policies at the granularity of modules, APIs and
their input parameters, and variables used in the shared context. Our run-
time framework formalizes the core of the �ow-based programming model of
Node-RED and was the basis when developing the JavaScript monitor Sand-
Trap [2].

This section presents a security model for Node-RED apps and charac-
terizes the essence of a �ne-grained access control monitor for the platform.
We show how to formalize and enforce security policies for nodes at the level
of APIs and their values, along with the access rights to the shared context.
Our main formal results are the soundness and transparency of the monitor.
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3.1 Language syntax and semantics

3.1.1 Syntax

We de�ne a core language to capture the reactive nature of nodes and �ows.
Nodes are reactive programs triggered by input messages to execute the code
of an event handler and potentially produce an output message. Flows model
connections between nodes by specifying the destination nodes for each
node’s output port. Given the set of member nodes with their handlers, it
is su�cient to state the successor nodes on each output port to construct a
�ow.

A �ow is syntactically de�ned as a set of nodes, written F = {Nk |k ∈K },
where K is a �nite subset of N, and k indicates a unique node identi�er. A
Node-RED environment may execute �ows simultaneously and the global
environment is de�ned by a set of �ows, written G = {Fl | l ∈ L}, where L
is a �nite subset of N, and l denotes a unique �ow identi�er. Based on a
generalization of Node-RED nodes, Figure 7 presents the syntax of a reactive
language inspired by Devriese and Piessens [16], where Val , Var , and Fun
denote the set of all possible values, variables, and functions, respectively. A
handler handler (x ){c} is de�ned by an input parameter x , which is bound
in a command c to perform a computation. While most commands are stan-
dard imperative constructs, we use command send (e , i ) to pass the value of
expression e to the node’s output port identi�ed by i . For simplicity, we use
functions f (e) to model module imports, API calls, user-de�ned functions,
and primitive operations such as addition and concatenation. To model the
shared context, we distinguish between node variables VarN , �ow variables
VarF , and global variables VarG such that Var = VarN ]VarF ]VarG .

v ∈Val , x ∈Var , f ∈ Fun , i ∈N
e ::= v | x | f (e)
c ::= skip | x := e | if e then c else c | while e do c | c ; c | send (e , i )
h ::= handler (x ){c}

Figure 7: Syntax of node handlers.

3.1.2 Semantics

We model the execution of Node-RED apps by de�ning the node semantics,
�ow semantics, and global semantics, respectively. Our trace-based seman-
tics records the sequence of events produced during the execution of a �ow.
We use these events to de�ne a semantic security condition that our monitor
will enforce in a sound and transparent manner.
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Node Semantics A node N = 〈config ,wires , l〉k is de�ned by a node con-
�guration config , an array wires that speci�es the connected nodes in the
�ow associated with output ports, an identi�er l that indicates the �ow that
the node belongs to, and a unique node identi�er k . Index k refers to an
element of node Nk , as in configk for the con�guration of node k .

A node con�guration config = 〈c,M ,I ,O〉 stores the state of the node
during the execution, where c is a command, a handler, or a termina-
tion signal (stop), M = [mN ,mF ,mG ] represents the memory for the three
scopes of node (mN : VarN →Val ), �ow (mF : VarF →Val ), and global
(mG : VarG →Val ), where VarN , VarF , and VarG are disjoint sets, I is the
input channel, and O is the array of output channels, re�ecting that a node
has one input port and as many output ports as it requires. We model an
input (output) channel as a sequence of values that a node receives (sends).
A class of nodes, called inject nodes, is triggered by external events such as
button click or time. Inject nodes send new messages to a �ow, thus trig-
gering the execution of the �ow. The wires array records the nodes that can
read the content of the output channel for the corresponding output port. A
node receives a message if the node identi�er is listed in wires among the
recipients of the output port assigned in a send command.

Trace-based Semantics Figure 8 illustrates the small-step semantics of
nodes. We annotate transitions with the trace of events thus generated,
where−→⊆Config ×Config and⇓ : (Exp ×Mem)→Val . A trace T is a �nite
sequence of events tk ∈ E de�ned by variable reads Rk (x ), variable writes
Wk (x ), or function calls fk (v ) generated by the execution of node k in a
�ow.

Expression evaluation is standard and records the sequence of events
produced during the evaluation, where Mk denotes the memory M in
〈c,M ,I ,O〉k . Command evaluation models the execution of a node’s han-
dler. The handler executes whenever there is a message in the input channel
I by consuming the message and updating the memory accordingly. Assign-
ments operate in a similar manner and record the trace of events produced
by variable reads and writes. An assignment updates the memory Mk to
M ′

k , subsequently triggering an update of the �ow and global memories, as
stated in the rule (Step) in Figure 9 and in the rule (Global) in Figure 10.
Send commands evaluate the expression e in the current memory, update
the associated output channel, and record the trace of events. The index k
distinguishes between events of di�erent nodes. We write −→∗ for the re�ex-
ive and transitive closure of the −→ relation, and −→n for the n-step execution
of −→.
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Expression Evaluation
〈v ,Mk〉 ⇓ v

(Value)

〈e ,Mk〉 ⇓Tk v

〈f (e),Mk〉 ⇓Tk.fk(v ) f̄ (v )
(Call)

〈x ,Mk〉 ⇓Rk(x ) Mk(x )
(Read)

Command Evaluation

I = I ′ .v x ∈VarN

〈handler(x ){c},M ,I ,O〉k −→ 〈c,M [x 7→ v ],I ′ ,O〉k
(Input)

〈skip,M ,I ,O〉k −→ 〈stop,M ,I ,O〉k
(Skip)

〈e ,Mk〉 ⇓Tk v M ′
k = Mk [x 7→ v ]

〈x := e ,M ,I ,O〉k
Tk.Wk(x )−−−−−−−−→ 〈stop,M ′ ,I ,O〉k

(Write)

c = if e then ctrue else cfalse 〈e ,Mk〉 ⇓Tk b

〈c,M ,I ,O〉k
Tk−−→ 〈cb ,M ,I ,O〉k

(If)

c = while e do cbody 〈e ,Mk〉 ⇓Tk true

〈c,M ,I ,O〉k
Tk−−→ 〈cbody ;c,M ,I ,O〉k

(While-T)

c = while e do cbody 〈e ,Mk〉 ⇓Tk false

〈c,M ,I ,O〉k
Tk−−→ 〈stop,M ,I ,O〉k

(While-F)

〈c1,M ,I ,O〉k
Tk−−→ 〈c′1,M

′ ,I ′ ,O ′〉k

〈c1;c2,M ,I ,O〉k
Tk−−→ 〈c′1;c2,M

′ ,I ′ ,O ′〉k
(Seq-1)

〈stop;c,M ,I ,O〉k −→ 〈c,M ,I ,O〉k
(Seq-2)

c = send(e , i ) 〈e ,Mk〉 ⇓Tk v O ′[i ] = O[i ].v

〈c,M ,I ,O〉k
Tk−−→ 〈stop,M ,I ,O ′〉k

(Output)

Figure 8: Node semantics.
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Il = vl ∀Nk ∈ (Nodes(Fl ) \Nl).Ik = ∅ Ml = [mN ,mF ,mG ]
M ′

l = [m ′N ,mF ,mG ] configl = 〈handler(x ){c},M ,I ,O〉l
config ′l = 〈c,M [x 7→ vl ],∅,O〉l

configl −→ config ′l
Nl = 〈configl ,wires , l〉l N ′l = 〈config ′l ,wires , l〉l
〈mF ,Nodes(Fl )〉l −→ 〈mF , (Nodes(Fl ) \ {Nl })∪ {N ′l }〉l

(Init)

Il = ∅ Mk = [mN ,mF ,mG ] M ′
k = [m ′N ,m

′
F ,m

′
G ]

configk = 〈c,M ,I ,O〉k config ′k = 〈c′ ,M ′ ,I ′ ,O〉k
configk

Tk−−−→ config ′k
Nk = 〈configk ,wires , l〉k N ′k = 〈config ′k ,wires , l〉k

〈mF ,Nodes(Fl )〉l
Tk−−−→ 〈m ′F , (Nodes(Fl ) \ {Nk })∪ {N ′k }〉l

(Step)

configk = 〈send(e , i );c,M ,I ,O〉k config ′k = 〈stop;c,M ,I ,O ′〉k
O ′k[i ] = Ok[i ].v configk

Tk−−−→ config ′k
Nk = 〈configk ,wires , l〉k N ′k = 〈config ′k ,wires , l〉k

ω = {Nk } ∪ {Nj | j ∈ wiresk [i ]}
ω′ = {N ′k } ∪ {N

′
j | j ∈ wiresk [i ], I

′
j = v .Ij }

〈mF ,Nodes(Fl )〉l
Tk−−−→ 〈mF , (Nodes(Fl ) \ω)∪ω′〉l

(Send)

configk = 〈stop,M ,I ,O〉k config ′k = 〈handler(x ){c},M ,I ,O〉k
Nk = 〈configk ,wires , l〉k N ′k = 〈config ′k ,wires , l〉k
〈mF ,Nodes(Fl )〉l −→ 〈mF , (Nodes(Fl ) \ {Nk })∪ {N ′k }〉l

(Term)

Figure 9: Flow semantics.

Mk = [mN ,mF ,mG ] M ′
k = [m ′N ,m

′
F ,m

′
G ]

Fl = 〈mF ,Nodes(Fl )〉l F ′l = 〈m
′
F ,Nodes(F ′l )〉l

Fl
Tk−−→ F ′l

〈mG ,Flows(G)〉
Tk−−→ 〈m ′G , (Flows(G) \ {Fl })∪ {F ′l }〉

(Global)

Figure 10: Global semantics.

87



2. Securing Node-RED Applications

Flow and Global Semantics We lift node semantics to formalize
the semantics of �ows and the environment. A global con�guration
G = 〈mG , {Fl | l ∈ L}〉 consists of a global shared memory mG and a �nite
set of �ows that are executing concurrently, where L ⊂N is the set of �ow
identi�ers. A �ow con�guration F = 〈mF , {Nk |k ∈K }}〉l is a tuple consist-
ing of a �ow shared memory mF , a �nite set of nodes where K ⊂N is the set
of node identi�ers, and l is the �ow identi�er. We use Nodes(Fl ) for the set of
nodes in a speci�c �ow and Flows(G) for the set of �ows in the environment.
Nodes are distinguished by unique node identi�ers in the environment and
the node Nk can be present in only one �ow. To unify the trigger point of
the �ow, we assume that a �ow has only one inject node and denote it by
Nl where Nl ∈Nodes(Fl ); in practice, it can be considered as a dummy node
which is the predecessor of all the inject nodes of the �ow.

We model a �ow by linking the output channels of a node to the input
channels of the next ones based on the �ow speci�cation. Note that a node
can have more than one output channel but only one input channel. The in-
ject node of a �ow, which does not appear in any of the wires arrays, triggers
the �ow execution by injecting a new message. An initial value is assigned
to the input channel of the inject node to model the behavior of the external
event such as a button click. We write Exec(Fl ,vl ) to refer to executions of a
�ow Fl with an initial value vl . Also, Exec(G ,V ) denotes executions of the
environment G with the set of initial values V = {(Nl ,vl ) |Fl ∈ Flows(G)}
for the member �ows.

We remark that message passing in Node-RED is asynchronous and mes-
sage objects traverse the graph in a non-deterministic manner, as reported
in the documentation (“no assumptions should be made about ordering once
a �ow branches” [34] and “�ows can be cyclic” [33]). Hence, we model the
execution of nodes in a �ow and the environment, as shown in Figures 9 and
10, respectively. We overload the notation −→ for transitions between �ow
and global con�gurations. In a nutshell, the �ow and global semantics im-
plements the non-deterministic behavior of �ows and the environment, and
lifts the node semantics to ensure that the �ow of messages follows the �ow
speci�cation.

The intuition of the rules is that the inject node of a �ow, i.e., the node
Nl of the �ow Fl , starts the execution by consuming the initial value (rule
Init), and then the execution continues according to the node semantics (rule
Step). When a node reaches a send command, it adds the output value to the
input channels of the next nodes in the �ow; the output value transmits out to
the output channel indicated by the send command and the input channels of
all nodes in the corresponding elements of the array wires get updated with
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the value (rule Send); wiresk denotes the array wires in 〈config ,wires , l〉k .
The execution proceeds until it terminates and gets back to the initial state,
ready to consume the next value in the input channel (rule Term). Note
that nodes are running concurrently; any of the ready nodes can make one
execution step. The only rule in the global semantics (rule Global) shows
that any of the �ows with at least one ready node can make an execution
step.

Generally speaking, any node that is able to progress continues the exe-
cution for one execution step, and it might a�ect the �ow and global contexts.
An execution step of a node corresponds to one execution step of the �ow
it belongs to and one execution step of the environment. Considering the
non-deterministic behavior of Node-RED’s scheduler, any ready node can be
selected for the next execution step.

3.2 Security condition and enforcement

We leverage our trace-based semantics to de�ne a semantics-based security
condition. The condition is parametric on node-level security policies, rep-
resented as allowlists of API calls and accesses to the shared context. Then,
we present the semantics of a �ne-grained node-level monitor and prove its
soundness and transparency with respect to the security condition.

3.2.1 Security condition

We extend the de�nition of nodes with allowlist policies
N = 〈config ,wires , l ,P ,V ,S 〉k , where P ⊆APIs ⊆ Fun describes permit-
ted API functions, V : P → 2Val de�nes the allowlist of arguments for each
API function, and S speci�es read/write permissions on the shared global and
�ow variables, such that S = {(x ,RW ) |x ∈VarF ]VarG ,RW ∈ {R,W }}.

The security condition matches the trace of events produced by the se-
mantics with the allowlist policies to check that any event produced by an
execution is permitted by the policy.

De�nition 1 (Event Security). Let tk be an event emitted from an execution
of node Nk . We de�ne a secure event with respect to 〈Pk ,Vk ,Sk 〉, written
secure(tk ,〈Pk ,Vk ,Sk 〉), as follows:

secure(Rk(x ), 〈Pk ,Vk ,Sk 〉)
∆= x ∈VarF ∪VarG ⇒(x ,R)∈ Sk

secure(Wk(x ), 〈Pk ,Vk ,Sk 〉)
∆= x ∈VarF ∪VarG ⇒(x ,W )∈ Sk

secure(fk(v ), 〈Pk ,Vk ,Sk 〉)
∆= f ∈APIs ⇒ f ∈ Pk ∧ v ∈Vk (f ).
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We lift the security of events to de�ne the security condition for node
traces secure(TN ), �ows traces secure(TF ), and global traces secure(TG) as
expected. A �nite sequence of events forms a trace. Hence a trace is secure
if all its events are secure. We de�ne trace security by the conjunction of
security checks on the composing events.

De�nition 2 (Trace Security). Trace T is secure, written secure(T ), if

T = tk .T
′⇒ secure(tk ,〈Pk ,Vk ,Sk 〉)∧ secure(T ′).

A node starts executing when it receives a value over its input channel.
An execution of a node is secure if the corresponding trace is secure, accord-
ing to the node policy.

De�nition 3 (Node-Level Security). The execution of a node
Nk = 〈config ,wires , l ,P ,V ,S 〉k with an input message I = v is secure
with regard to 〈Pk ,Vk ,Sk 〉 if each step of the node execution complies with
〈Pk ,Vk ,Sk 〉, i.e.,

∀〈c′ ,M ′ ,I ′ ,O ′〉k .〈handler (x ){c},M ,v ,O〉k
Tk−−→∗ 〈c′ ,M ′ ,I ′ ,O ′〉k

⇒ secure(Tk).

We now de�ne the security of Node-RED app executions based on the
�ow and global semantics. The inject node of a �ow initiates the �ow execu-
tion, and it triggers other nodes by traversing the �ow graph. At the global
level, nodes in �ows generate events while they are executing concurrently
in the environment. We present �ow and global execution security for the
trace of events produced by their nodes at each execution step.

De�nition 4 (Flow-Level Security). LetFl be a �ow and vl be an initial value
for the inject node of the �ow, i.e., Nl =〈〈handler(x ){c},M ,vl ,O〉l,wires , l〉l.
We de�ne �ow executions Exec(Fl ,vl ) secure if

Nl ∈Nodes(Fl ) ∧ ∀F ′l . Fl

TF−−→∗F ′l ⇒ secure(TF).

The trace TF is secure if secure(TF ) holds, i.e., every event of the trace is
secure according to the security policy of the corresponding node.

De�nition 5 (Global-Level Security). Let G be an environment and
Vinit be a set of initial values for the inject nodes of the �ows
in G , i.e., ∀(Nj ,vj ) ∈Vinit . Fj ∈ Flows(G)∧Nj ∈Nodes(Fj )∧
Nj = 〈〈handler(x ){c},M ,vj ,O〉j,wires , j 〉j. We de�ne global executions
Exec(G ,Vinit ) secure if

∀G ′ .G
TG−−→∗G ′⇒secure(TG).
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Expression Evaluation

secure(Rk(x ), 〈Pk ,Vk ,Sk 〉)

〈x ,Mk〉 ⇓
Rk(x )
M Mk(x )

(ReadM)

〈e ,Mk〉 ⇓Tk v secure(fk(v ), 〈Pk ,Vk ,Sk 〉)

〈f (e),Mk〉 ⇓
Tk.fk(v )
M f̄ (v )

(CallM)

Command Evaluation

secure(Wk(x ), 〈Pk ,Vk ,Sk 〉) 〈e ,Mk〉 ⇓Tk v M ′ = M [x 7→ v ]

〈x := e ,M ,I ,O〉k
Tk.Wk(x )−−−−−−−−→M 〈stop,M

′ ,I ,O〉k
(WriteM)

Figure 11: Excerpt of monitor semantics.

3.2.2 Enforcement Mechanism

Figure 11 presents the core of our �ne-grained monitor to enforce the
above-mentioned security condition with respect to allowlist policies. We
annotate evaluation relations withM to distinguish between the monitored
behavior and the original one. We only present the rules that di�er from the
semantic rules given in Figure 8; we replace −→ with −→M, and ⇓ with ⇓M.
We add security constraints to the semantic rules for reading a variable from
the shared context (rule ReadM), calling an API function (rule CallM), and
writing to a shared variable (rule WriteM).

For the email example W in Section 2, the policy requires allowlisting the
API for sending the message and the list of intended recipients. The monitor
intervenes whenever the API is called and ensures that the recipient is in the
allowlist policy. An execution of a �ow containing the malicious email node
will be suppressed because the attacker’s email address is not listed in the
permitted values of the API call. The malicious event is detected by the rule
CallM, i.e., sendMail ∈ Pk ∧ "me@attacker.com" <Vk (sendMail).

For context vulnerabilities, such as Water Utility Complete Example W,
the allowlist consists of access rights to shared variables for each node de-
ployed in the environment. The monitor observes the interaction of nodes
with the shared context and blocks the execution whenever the allowlist pol-
icy does not permit access to the shared variable. The attack scenario in the
vulnerable water utility �ow can also be prevented by specifying an allowlist
policy (tank1Level,W ) only for the nodes that must write to a shared vari-
able, which stops any attempt from other nodes to write to the global context
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(rule WriteM).
We prove the soundness and transparency properties of our monitor. The

soundness theorem shows that any global traces produced by an execution
of the monitor are secure with respect to the allowlist policy.

Theorem 1 (Soundness). The monitor enforces global-level security for any
�nite executions,

∀(G ,V ).∀G ′ .G
TG−−→∗MG ′ ⇒ secure(TG ).

The transparency theorem shows that if a monitored execution is secure,
the monitor semantics and the original semantics generate the same trace.
Moreover, if both semantics run under the same scheduler, the monitor pre-
serves the longest secure pre�x of a trace.

Theorem 2 (Transparency). The monitor preserves the longest secure pre�x
of a trace yielded by an execution,

∀(G0,V ).∀n ∈N.G0
T−→n Gn ⇒∃m ≤ n .G0

T ′−−→m
M Gm ∧[(

secure(T)⇒ T = T ′∧ n = m
)
∨

((
∃i < n .G0

Tpre−−−→i Gi ∧Gi

Ti−−→ Gi+1∧Gi+1
Tpost−−−−→n−i−1 Gn ∧ secure(Tpre )∧

¬secure(Ti )
)
⇒ T ′ = Tpre ∧ i = m

)]
.

The proofs of the theorems are reported in Appendix 2.A.

4 Related work

We discuss the most closely related work on Node-RED security and mod-
eling, monitor implementation, and securing trigger-action platforms in
general. We refer the reader to surveys on the security of IoT app plat-
forms [6, 13] for further details.
Node-RED security and modeling Ancona et al. [4] investigate runtime
monitoring of parametric trace expressions to check the correct usage of API
functions in Node-RED. Trace expressions allow for rich policies, includ-
ing temporal patterns over sequences of API calls. By contrast, our monitor
supports both coarse and �ne access control granularity of modules, func-
tions, and contexts. Schreckling et al. [48] propose COMPOSE, a framework
for �ne-grained static and dynamic enforcement that integrates JSFlow [20],
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an information-�ow tracker for JavaScript. COMPOSE focuses on data-level
granularity, whereas our monitoring framework supports module- and API-
level granularity.

Clerissi et al. [14] use UML models to generate and test Node-RED �ows
to provide early system validation. A preliminary set of guidelines has also
been proposed to assist Node-RED �ow makers in terms of user compre-
hension and for testing activities [15]. Focusing more on end users and
less on developers, Kleinfeld et al. [26] introduce an extension of Node-RED
called glue.things, enabling Node-RED easier to use by prede�ned trigger
and action nodes. Blackstock and Lea [11] propose a distributed runtime for
Node-RED apps such that �ows can be hosted on various platforms. Tata et
al. [52] propose a formal modeling for decomposing process-aware applica-
tions deployed in IoT environments using Petri nets; Node-RED indeed �ts
in this setup, thus extended as a prototype for their approach [24].

In terms of modeling, Node-RED can be intrinsically seen as a concur-
rent system, thus our approach shares similarities with the broad range of
formal approaches such as process calculi [7, 45], CSP [21], and CCS [30]. In
the same spirit, our formalization is targeted to capture the execution model
of Node-RED �ows consisting of concurrent node executions that trigger
the execution of code upon receiving messages, and modify, create, and dis-
patch messages to the next nodes. In contrast, our modeling is explicit and
it captures the essence of the execution semantics of Node-RED. Focusing
on security policies in concurrent systems, KLAIM [10, 31] is a program-
ming language providing a mechanism to customize access control policies.
The mechanism, based on a hierarchical capability-based type system, en-
forces policies that control resource usage and authorize migration and exe-
cution of processes. While KLAIM is designed for programming distributed
applications with agents and code mobility, our Node-RED model is simple
and expressive enough to describe the API-based access control enforcement
mechanism.

Monitor implementation Regarding the possible candidates for imple-
menting our theoretical framework, it should be noted that the dynamic
nature of JavaScript requires more precise analysis provided by dynamic ap-
proaches. Andreasen et al. [5] survey available methods for dynamic analysis
for JavaScript, and outline three general categories: runtime instrumenta-
tion, source code instrumentation, and metacircular interpreters.

DProf [18] and NodeProf [51] are two well-known runtime instrumenta-
tion tools. DProf instruments a program at the instruction level, targeting a
variety of languages, including JavaScript. NodeProf instead instruments a
program at the abstract syntax tree (AST) level and is speci�cally made as a
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dynamic analysis framework for Node.js. However, some important Node.js
features, such as module.exports, commonly used in Node-RED nodes, are
not supported by NodeProf yet. In addition, to obtain the desired results, it
requires the instrumentation of the entire Node-RED environment. Node-
MOP [47] is a Monitoring-Oriented Programming (MOP) tool built on top of
NodeProf that also looks interesting for our purposes, while the challenges
in practice remain unresolved.

Ferreira et al. [17] propose a lightweight permission system to enforce the
least-privilege principle at the Node.js packages level at runtime, restricting
access to security-critical APIs and resources. Sharing some of our motiva-
tions, however, this work does not enforce access control policies at the con-
text and value levels. Pyronia [28] is a �ne-grained access control system for
IoT applications restricting access at the function level via runtime and ker-
nel modi�cations. To detect access to sensitive resources, Pyronia leverages
OS-level techniques such as system call interposition and stack inspection.
By contrast, our monitor needs to be implemented in language-level isolation
to prevent access to sensitive resources at di�erent levels of granularity.

Membrane-based approaches [1, 2, 19, 29, 49] seem to be the most promis-
ing compared to other techniques. Membranes are a “defensive program-
ming pattern used to intermediate between sub-components of an applica-
tion” [53]. This pattern is implemented in Node.js by recursively wrapping an
object in a proxy with respect to prototype hierarchies such that the wrapped
object can only be modi�ed in protected ways. Staicu et al. [50] provide an
example of this technique applied to Node.js, isolating libraries to extract
taint speci�cations automatically.

SandTrap [2] combines the Node.js vm module with fully structural
proxy-based two-sided membranes to enforce �ne-grained access control
policies. SandTrap has been integrated with Node-RED and evaluated on
a set of �ows while enforcing a variety of policies yet incurring negligible
runtime overhead. Our framework is a step toward providing the formal
grounds for characterizing the soundness and transparency of the SandTrap
instantiation to Node-RED. The formalization can be further enhanced by
modeling the Node.js environment and full-featured JavaScript [27].

Securing trigger-action platforms IoTGuard [12] is a monitor for enforc-
ing security policies written in the IoTGuard policy language. Security poli-
cies describe valid transitions in an IoT app execution. Bastys et al. [8, 9]
study attacks by malicious app makers in IFTTT and Zapier. They develop
dynamic and static information �ow control (IFC) in IoT apps and report on
an empirical study to estimate to what extent IFTTT apps manipulate sen-
sitive information of users. Wang et al. [55] develop NLP-based methods
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to infer information �ows in trigger-action platforms and check cross-app
interaction via model checking. Alpernas et al. [3] propose dynamic coarse-
grained IFC for JavaScript in serverless platforms. Our presented monitor
is based on access control rather than IFC. Hence, these works are comple-
mentary, focusing on information �ow after access is granted. IFC supports
rich dependency policies, yet arduous to track information �ow in JavaScript
without breaking soundness or giving up precision.

5 Conclusion

We have investigated the security of Node-RED, an open-source JavaScript-
driven trigger-action platform. We have expanded on the recently-
discovered critical exploitable vulnerabilities in Node-RED, where the impact
ranges from massive ex�ltration of data from unsuspecting users to taking
over the entire platform. Motivated by the need for a security mechanism for
Node-RED, we have proposed an essential model for Node-RED, suitable to
reason about nodes and �ows, be they benign, vulnerable, or malicious. We
have formalized a principled framework to enforce �ne-grained API control
for untrusted Node-RED applications. Our formalization for a core language
shows how to soundly and transparently enforce global security properties
of Node-RED applications by local access checks, supporting module-, API-,
value-, and context-level policies.
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Appendix

2.A Proofs

To prove the soundness theorem, we show that each execution step of a node
under the monitor generates secure events.

Lemma 1. Let Nk = 〈config ,wires , l ,P ,V ,S 〉k be a node. Any semantic step
of Nk under the monitor produces a secure trace with regard to 〈Pk ,Vk ,Sk 〉,
i.e., ∀Nk . configk

Tk−−→M config ′k⇒ secure(Tk).

Proof. First we show that any trace produced from the expression evaluation
rules is secure. By induction on the derivation 〈e ,Mk〉 ⇓M v :

- The rule (Value) generates an empty (secure) trace.
- The rule (ReadM) only generates the event Rk(x ) if it meets the security

condition for reading a variable, i.e., secure(Rk(x ), 〈Pk ,Vk ,Sk 〉).
- In the rule (CallM), by the induction hypothesis, 〈e ,Mk〉 ⇓

Tk

M v ⇒
secure(Tk ). Then, the trace Tk.fk(v ) is generated if the API call
and the value of the expression e obeys the security condition for
API calls, i.e., secure(fk(v ), 〈Pk ,Vk ,Sk 〉). Therefore, secure(Tk ) ∧
secure(fk(v ), 〈Pk ,Vk ,Sk 〉)⇒ secure(Tk .fk(v ), 〈Pk ,Vk ,Sk 〉).

Next, by induction on the derivation configk
Tk−−→M config ′k, we prove the

lemma:
- Rules (Input), (Skip), and (Seq-2) generate empty traces, which are triv-

ially secure.
- Rules (If), (While-T), (While-F) and (Output) generate the same trace

resulting from the expression evaluation 〈e ,Mk〉 ⇓
Tk

M v ⇒ secure(Tk ), be-
cause of the proof above.

- The trace Tk generated in Rule (Seq-1) is secure, based on the induction
hypothesis.

- The rule (WriteM) emits a secure trace since 〈e ,Mk〉 ⇓
Tk

M v ⇒
secure(Tk ), and secure(Tk ) ∧ secure(Wk(x ), 〈Pk ,Vk ,Sk 〉) ⇒
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secure(Tk .Wk(x ), 〈Pk ,Vk ,Sk 〉). Because any trace generated by the
rules of expression evaluation 〈e ,Mk〉 ⇓M v is secure, and the write event is
produced only if it complies with the security condition for writing into a
variable, i.e., secure(Wk(x ), 〈Pk ,Vk ,Sk 〉).

We have proved the node-level security as a corollary of Lemma 1. Hence,
the generated trace from a transition between any two node con�gurations
is secure. Next, we prove that any trace generated by a �ow execution under
the monitor is secure.

Lemma 2. Any semantic step of a �ow Fl under the monitor produces a secure

trace, ∀Fl ,F
′
l .Fl

TF−−→M F ′l ⇒ secure(TF).

Proof. By case analysis on the �ow semantics rules:
- The rules (Init) and (Term) yield empty (secure) traces, which are triv-

ially secure.
- The rules (Step) and (Send) repeat the same trace generated from the

corresponding transition between node con�gurations. Lemma 1 demon-
strates that ∀Nk . configk

Tk−−→M config ′k ⇒ secure(Tk ). Thus, the theorem
also holds for these cases.

Lemma 3. Let G be a global con�guration. Any semantic step of G under the

monitor is secure, ∀G ,G ′ .G
TG−−−→M G ′⇒ secure(TG ).

Proof. The single rule in the global semantics replicates the trace
produced by the transition between the two �ow con�gurations.
Lemma 2 shows �ow transitions are secure under the monitor, thus
the global transitions. Because

(
∀G ,G ′ .G

TG−−−→M G ′⇒ secure(TG )
)
⇔(

∀Fl ,F
′
l .Fl

TF−−−→M F ′l ⇒ secure(TF )
)
.

Theorem 1. By using the lemma 3 and multiple repetitions of the single rule
of the global semantics, the soundness theorem is proven as a corollary.

To prove the transparency theorem, we show that the monitor preserves
the secure events emitted from a node.

Lemma 4. Any semantic step in the original execution of a node
that emits a secure trace remains the same in the monitor semantics,

∀Nk ,N
′
k . confk

Tk−−→ conf ′k ∧ secure(Tk )⇒ confk
Tk−−→M conf ′k .
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Proof. By induction on 〈e ,Mk〉 ⇓ v , we observe that there is a one-to-
one mapping from the rules for ⇓ and ⇓M if the security conditions
secure(Rk(x ), 〈Pk ,Vk ,Sk 〉) and secure(fk(v ), 〈Pk ,Vk ,Sk 〉) hold.

By induction on the derivation confk
Tk−−→ conf ′k , again we can see a one-

to-one correspondence between the rules for −→ and −→M, as a result of the
induction on 〈e ,Mk〉 ⇓ v , and the comparison between the rule (Write) in
the standard semantics and the rule (WriteM) in the monitor semantics,
which requires secure(Wk(x ), 〈Pk ,Vk ,Sk 〉) to be held.

We assume utilizing a deterministic order-preserving scheduler that both
the original semantics and the monitor employ. The non-deterministic
scheduler might a�ect the order of events generated by the global and �ow
transitions.

Lemma 5. Any semantic step of the global con�guration that generates a se-

cure trace remains the same in the monitor semantics, ∀G ,G ′ .G
Tk−−→ G ′ ∧

secure(Tk )⇒G
Tk−−→M G ′ .

Proof. The standard and the monitor semantics use the
same global and �ow semantics. With the assumption of
employing an identical deterministic scheduler and using
lemma 4, we can write ∀G ,G ′ . G

Tk−−→G ′ ∧ secure(Tk ) ⇒
∃!Fl ,Nk, F

′
l ,N

′
k . Fl ∈ Flows(G) ∧ Nk ∈Nodes(Fl ) ∧ F ′l ∈ Flows(G ′) ∧

N ′k ∈Nodes(F ′l ) ∧ confk
Tk−−→M conf ′k . Similarly, the statement holds for

Tk−−→M in the other way.

Theorem 2. Starting with the initial con�guration (G0,Vinit ) and using the
global semantics, there are two cases:

- Case 1 (the trace is secure): If secure(T ), using the lemma 5 for n-times
results T = T ′ ∧n = m .

- Case 2 (the trace is not secure): If T = Tpre .Ti .Tpost where
secure(Tpre )∧¬secure(Ti ), then using the lemma 5 for i times concludes
T ′ = Tpre ∧ i = m . Thereafter, no semantic rule applies for the transition

Gi

Tpre−−−−→i Gi+1 in the monitor semantics.
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Abstract. Nontransitive Noninterference (NTNI) and Nontransitive
Types (NTT) are a new security condition and enforcement for

policies which, in contrast to Denning’s classical lattice model, assume
no transitivity of the underlying �ow relation. Nontransitive security
policies are a natural �t for coarse-grained information-�ow control
where labels are speci�ed at module rather than variable level of gran-
ularity.
While the nontransitive and transitive policies pursue di�erent goals
and have di�erent intuitions, this paper demonstrates that nontransi-
tive noninterference can in fact be reduced to classical transitive non-
interference. We develop a lattice encoding that establishes a precise
relation between NTNI and classical noninterference. Our results make
it possible to clearly position the new NTNI characterization with re-
spect to the large body of work on noninterference. Further, we devise
a lightweight program transformation that leverages standard �ow-
sensitive information-�ow analyses to enforce nontransitive policies.
We demonstrate several immediate bene�ts of our approach, both the-
oretical and practical. First, we improve the permissiveness over (while
retaining the soundness of) the nonstandard NTT enforcement. Second,
our results naturally generalize to a language with intermediate inputs
and outputs. Finally, we demonstrate the practical bene�ts by utiliz-
ing state-of-the-art �ow-sensitive tool JOANA to enforce nontransitive
policies for Java programs.
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1 Introduction

Modern approaches to secure information �ow follow Denning’s classical
model [8]. This model maps information to security levels and uses a �ow
relation that regulates how information can move between the levels. Un-
der Denning’s model, when data moves from one security level to another
one, it e�ectively looses its original security classi�cation. Denning there-
fore argues that in such a model, the �ow relation must be transitive, which
has been the convention for a large body of work on information �ow con-
trol [13, 26, 32].

Nontransitive policies In recent work, Lu and Zhang [17] observe that in
certain scenarios, the transitivity requirement is in fact undesirable. This is
most apparent when security policies are speci�ed in a coarse-grained man-
ner, i.e., at the level of mutually-distrustful components in an application.
For example, “component Alice may trust only another component Bob with
her information, however due to implied transitive relations, her informa-
tion may �ow not only to Bob but also indirectly to all components that Bob
trusts, which is undesirable for Alice” [17]. Another, more �ne-grained ex-
ample, is that of user policies in a social network stipulating that “my friends
can access my personal data but not friends of my friends”. To semantically
characterize such security requirements, Lu and Zhang propose the notion of
nontransitive noninterference (NTNI) and propose a specially designed type
system to statically enforce it.

Nontransitive noninterference is not to be confused with intransitive
noninterference [18, 23, 25, 30], a popular model for declassi�cation. Al-
though both nontransitive and intransitive policies assume �ow relations
are not transitive, there is a conceptual di�erence between them. Assum-
ing a �ow relation with �ows from A to B and from B to C but not from A
to C , intransitive noninterference allows A’s information to indirectly �ow
to C as long as the information passes through a declassi�er. In contrast,
nontransitive policy forbids all �ows from A to C . Section 7 elaborates the
relation in detail.

NTNI is introduced by a nonstandard security characterization and a spe-
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cialized type system [17]. The question remains open whether the main-
stream machinery of information-�ow control reasoning and enforcement
can be leveraged for tracking NTNI.

This paper answers this question positively by showing how to en-
code nontransitive noninterference via classical transitive noninterference.
Our encoding makes it possible to use standard transitive techniques for
information-�ow control to enforce nontransitive policies and thus address
the coarse-grained scenarios that motivate them. This has substantial prac-
tical bene�ts, making it possible to deploy information-�ow concepts and
tools to achieve nontransitive security.

We argue that �ow-sensitive analysis is a natural �t for the component-
based scenario, where developers are not required to provide �ne-grained an-
notations at the level of variables. We devise a lightweight program transfor-
mation to leverage �ow-sensitive information-�ow analysis to enforce NTNI.
Thanks to the �ow-sensitivity of the analysis, the type system veri�es which
variables are a�ected by what components, enforcing component-level secu-
rity. We implement a prototype of the transpiler, i.e., program transformer
and policy translator, and leverage �ow-sensitive static tool JOANA [11] to
demonstrate our approach in practice.
Contributions The contributions of this paper are:
• We show that the de�nition of NTNI can be reduced to classical transitive

noninterference through a lattice encoding (Section 2).
• We leverage our encoding to show how an existing �ow-sensitive

information-�ow type system can enforce the coarse-grained policies that
motivate NTNI in the �rst place (Section 3).

• We extend our results to a language supporting interaction through input
and output commands (Section 4).

• We develop a prototype that translates NTNI policy to a classical transitive
setting and uses JOANA static analysis tool (Section 5).

2 Security characterization transpiled

All permitted �ows between security levels are expressed explicitly under
nontransitive policies, as opposed to the traditional way [8] of policy speci�-
cation where security levels constitute a partially ordered set. Nontransitive
policies only have re�exive property, yet expressive enough to include other
properties such as transitivity and antisymmetry among arbitrary selections
of levels.

This section shows how nontransitive noninterference can be modeled as
transitive noninterference using a power-lattice encoding. Throughout the
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1 Alice {
2 data;
3 main() {
4 Bob.receive(data);
5 Bob.good();
6 Bob.bad();
7 }
8 }
9 Bob {

10 data1;
11 data2;
12 receive(x) { data1 = x; }
13 good() { Charlie.receive(data2); }
14 bad() { Charlie.receive(data1); }
15 }
16 Charlie {
17 data;
18 receive(x) { data = x; }
19 }

Figure 1: Running example [17].

Alice Bob Charlie

A B C

Figure 2: Nontransitive policy for the running example.

paper, we use a running example adopted from Lu and Zhang [17] to discuss
how the transpilation works. We formalize the security notions and prove
the relation between these two approaches to de�ne a security policy.
Running example Figure 1 shows our running example consisting of three
components named Alice, Bob, and Charlie. The security policy stipulates
that Bob is allowed to read Alice’s information and Charlie is allowed to
read Bob’s information. At the same time, no information �ow from Alice is
allowed to Charlie.

Based on the policy, Bob can only send information to Charlie if it is
not in�uenced by Alice, as illustrated in Figure 2. A transitive policy would
presume that if information may �ow from Alice to Bob and from Bob to
Charlie, then it may also �ow from Alice to Charlie. This is not the case
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in this example. Since nontransitive policies specify all permitted �ows ex-
plicitly, the information �ow from Alice to Charlie would be considered
as desired only if it was explicitly stated in the policy. It is indeed easy to
see that nontransitive policies are a generalization of transitive ones because
transitive closures can be stated as permitted �ows to preserve the transitive
property.

Using a coarse-grained information-�ow control is su�cient to specify
the intended policy. Consider the labels A, B , and C for the components
Alice, Bob, and Charlie, respectively. We specify the nontransitive policy
using an arbitrary information �ow relation D 1, written ADB and B DC ,
which speci�es that information from security level A can �ow to security
level B and from B to C . It also stipulates any other information �ows
between the levels are disallowed. For instance, information from security
level A must not �ow to C , directly or through any other components.

For the sake of simplicity, we rewrite the example program in a model
language (without support for object-orientation) that demonstrates the ex-
plicit �ows arisen from data dependencies between component variables. In
the program shown in Figure 3, Comp.var denotes the variable var belongs
to the component Comp.

1 // Bob.receive(data)
2 Bob.data1 := Alice.data;
3 // Bob.good()
4 Charlie.data := Bob.data2;
5 // Bob.bad()
6 Charlie.data := Bob.data1;

Figure 3: Simpli�ed version of the running example.

To track �ows between component variables, we label all variables of
a component with the security label of the component. By extending the
labeling function for variables of components, we classify Alice.data as A,
Bob.data1 and Bob.data2 as B , and Charlie.data as C . The program does
not satisfy nontransitive noninterference because there is an illegal �ow from
A to C ; the content of Alice.data is directly transmitted to Charlie.data

via Bob.data1. If the program, however, did not include the bad method in
Bob, it would be secure with respect to the nontransitive policy.

1As a visual cue, we will use the green color for nontransitive and blue color for transitive
notions throughout the paper.
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2.1 Security notions

We now present our model language and formal de�nitions of security no-
tions, i.e., transitive and nontransitive noninterference for programs. To
model the essence of these characterizations, we assume a simple batch-job
setting where only the initial and �nal memories are observable (before and
after program execution). We will show how to extend our results to a lan-
guage with I/O in Section 4.

Programs consist of multiple code components and a memory
M : Var →Val , a (total) mapping from a set of variables Var to a set
of values Val , partitioned by components Cmp of the program. A vari-
able xα ∈Var denotes x is allocated at α ∈ Cmp. We write x where the
component name is unused. Using coarse-grained labeling, each compo-
nent maps to a security label, written ΓCmp : Cmp→ L. As a result, all
variables of a component are annotated with the same label. Formally,
∀α ∈ Cmp.∀xα ∈Var .Γ (xα) = ΓCmp(α) where Γ : Var → L. Note that we
use Varc for the set of variables that exist in program c.

Figures 4 and 5 illustrate the syntax and semantics of our model lan-
guage. An execution con�guration 〈c,M 〉 is a pair of a command c and a
given memory M , and→ introduces the transition relation between con�g-
urations. For expressions, 〈e ,M 〉 ⇓ v denotes an expression e evaluates to
a value v under a memory M . We write −→∗ for the re�exive and transitive
closure of the→ relation, and −→n for the n-step execution of→.

We adopt termination-insensitive [32] noninterference that ignores in-
formation leaks resulted from termination behavior of the given program.
NTNI is introduced by a termination-insensitive notion for batch-job pro-
grams [17]. We extend the model language to support I/O and lift the security
notion to progress-insensitive [3].

Note that the choices of termination- and progress-sensitivity are orthog-
onal to nontransitivenesses of policies. Our results (in particular, the lattice
encoding) can be thus replayed for other variants of noninterference.
TransitiveNoninterference (TNI) For a given program, classical noninter-
ference guarantees if two memories agree on variables at level ` and lower,
memories after the execution of the program also agree on the variables at
level ` and lower. Accordingly, an observer at level ` can see the values of the
variables labeled as ` or lower, called `-observable values. Transitive nonin-
terference stipulates `-observable �nal values of a program only depend on
initial values from ` or lower levels.

A transitive security policy is a triple T = 〈LT , v,ΓT 〉 where LT is a set
of security labels and v ⊆ LT ×LT is a binary relation that forms a partially
ordered set (re�exivity, asymmetry, transitivity) on LT and speci�es permit-
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e ::= v | x | e ⊕ e
c ::= skip | x := e | if e then c else c | while e do c | c;c

Figure 4: Language syntax.

Expression Evaluation

〈v ,M 〉 ⇓ v
(Value)

〈x ,M 〉 ⇓M (x )
(Read)

〈e1,M 〉 ⇓ v1 〈e2,M 〉 ⇓ v2

〈e1 ⊕ e2,M 〉 ⇓ v1 ⊕ v2
(Operation)

Command Evaluation

〈skip,M 〉 → 〈stop,M 〉
(Skip)

〈e ,M 〉 ⇓ v M ′ = M [x 7→ v ]

〈x := e ,M 〉 → 〈stop,M ′〉
(Write)

c = if e then ctrue else cfalse 〈e ,M 〉 ⇓ b

〈c,M 〉 → 〈cb ,M 〉
(If)

c = while e do cbody 〈e ,M 〉 ⇓ true

〈c,M 〉 → 〈cbody ;c,M 〉
(While-T)

c = while e do cbody 〈e ,M 〉 ⇓ false

〈c,M 〉 → 〈stop,M 〉
(While-F)

〈c1,M 〉 → 〈c′1,M
′〉

〈c1;c2,M 〉 → 〈c′1;c2,M
′〉

(Seq-I)

〈stop;c,M 〉 → 〈c,M 〉
(Seq-II)

Figure 5: Language semantics.
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ted �ows between security levels. A labeling function ΓT : Var → LT maps
a variable to a security label.

Transitive indistinguishability relation (=T ) for a security label ` ∈ LT
is de�ned as follows. Two memories are indistinguishable at level ` if and
only if values of variables observable at the level ` and lower are the same.

De�nition 1 (Transitive Memory Indistinguishability). Two memories M1

and M2 are transitively indistinguishable at level ` ∈ LT , written M1
`=T M2

if and only if ∀x ∈Var .ΓT (x)v ` =⇒ M1(x) = M2(x).

We de�ne transitive noninterference based on the indistinguishability
relation between memories. A (batch-job) program c satis�es termination-
insensitive transitive noninterference, written TNITI (T ,c), when for any two
memories indistinguishable at level ` ∈ LT , the computation of the program
c terminates for both and the `-observer cannot distinguish the �nal memo-
ries.

De�nition 2 (Termination-Insensitive Transitive Noninterference). A pro-
gram c satis�es TNITI (T ,c) if and only if ∀` ∈ LT .∀M1,M2.

(
M1

`=T M2∧

〈c,M1〉−→∗〈stop,M ′
1〉 ∧ 〈c,M2〉−→∗〈stop,M ′

2〉
)
=⇒ M ′

1
`=T M ′

2.

Nontransitive Noninterference (NTNI) The nontransitive notion of non-
interference demands that for a given program, changes on variables at secu-
rity level ` can only in�uence variables at the levels allowed by the policy. In
this condition, `-observable values are the content of variables labeled as `.
Hence, nontransitive noninterference ensures that `-observable �nal values
are only dependent on those initial values that can �ow to `, as stated in the
policy.

A nontransitive security policy is a triple N = 〈LN , D ,ΓN 〉 where LN
is a set of security labels, ΓN : Var → LN is a labeling function, and D is an
arbitrary �ow relation specifying permitted �ows (can-�ow-to relation [8]).
We de�ne C (`) = {`′ |`′D `} as the set of levels that can �ow to `, including it-
self. The only condition for the relation is to be re�exive; no other properties,
such as transitivity, are required.

Nontransitive indistinguishability relations (=N ) for a security label ` ∈
LN and a set of security labelsL ⊆ LN are de�ned below. Two memories are
indistinguishable at level ` if variables of the level ` have the same values in
those two. Consistently, the relation holds for a set of labels if variables of
any level existing in the set be mapped to same values in the two memories.

De�nition 3 (Nontransitive Memory Indistinguishability). Two memories
M1 and M2 are nontransitively indistinguishable at level ` ∈ LN , written
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M1
`=N M2, if and only if ∀x ∈ Var .ΓN (x) = ` =⇒ M1(x) = M2(x). The

memories are indistinguishable for a set of security levels L ⊆ LN , written
M1

L=N M2, if and only if ∀x ∈Var .ΓN (x) ∈ L =⇒ M1(x) = M2(x).

We use the indistinguishability relation between memories to de�ne non-
transitive noninterference. A (batch-job) program c satis�es termination-
insensitive nontransitive noninterference, written NTNITI (N ,c), if for any
two memories indistinguishable for the set of levels may in�uence variables
at ` ∈ LN , the program c gets terminated for both and the `-observer cannot
distinguish the �nal memories.

De�nition 4 (Termination-Insensitive Nontransitive Noninterference). A pro-
gram c satis�es NTNITI (N ,c) if and only if
∀` ∈ LN .∀M1,M2.

(
M1

C (`)
= N M2 ∧ 〈c,M1〉 −→∗〈stop,M ′

1〉

∧〈c,M2〉 −→∗〈stop,M ′
2〉
)
=⇒ M ′

1
`=N M ′

2.

2.2 Relationship between NTNI and TNI

We �rst prove that NTNI is a generalization of TNI, and then for the other
side, we introduce the transpilation from NTNI to TNI and discuss how a
nontransitive policy can be seen as transitive. We present an encoding to
convert nontransitive policies to transitive ones and show if a program is
secure with respect to a nontransitive policy, then a semantically equivalent
program satis�es an equivalent transitive policy and vice versa.

Theorem 1 (From TNITI to NTNITI ). For any program c and any transi-
tive security policy T = 〈LT , v,ΓT 〉, there exists a nontransitive security pol-
icy N = 〈LN , D ,ΓN 〉 where LN = LT , D = v∗, and ΓN = ΓT such that
TNITI (T ,c) ⇐⇒ NTNITI (N ,c). Formally,

∀c.∀T .∃N .TNITI (T ,c) ⇐⇒ NTNITI (N ,c).

Proof. The proofs of all statements can be found in Appendix 3.C.

The transpilation from NTNI to TNI includes mapping the nontransitive
policy to the corresponding transitive one and rewriting the given program
to be compatible with the policy encoding. We establish a powerset lattice
with the set of security levels. To connect these two policies together, we
should map the components and their variables to the transitive labels. Prior
to labeling variables, a transformation in the program is needed, which we
call canonicalization.
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{}

{A} {B} {C}

{A,B} {A,C} {B,C}

{A,B,C}

Asource,Asink Bsource Csource

Bsink Csink

Figure 6: The powerset lattice for the running example.

In nontransitive policies, ADB means information from the source level
A can �ow to the sink level B . Therefore, we allocate two fresh variables
for each component variable to capture the source and sink of information.
We prepend a sequence of assignments from source variables to the compo-
nent variables, and we append assignments from the component variables to
sink variables. Then, we can label source and sink variables separately with
respect to the encoding to preserve the notion of nontransitive policy.

Running example We describe the transpilation from NTNI to TNI for the
running example shown in Figure 3. We form the powerset lattice of labels
used in the nontransitive policy as the set of labels for the corresponding
transitive policy, i.e., LT = ℘({A,B ,C }) and v =⊆ (see Figure 6). We trans-
form the program to be able to capture the notion of nontransitive noninter-
ference by assigning labels to variables. We add two fresh variables for each
component variable in the given program to di�erentiate the source and sink
of information and label them according to the de�nition of NTNI.

Figure 7 demonstrates the program after the transformation, which we
call it the canonical version of the program. It consists of three sections: (1)
initial assignments from a (source) variable to a temp variable (lines 2-5), (2)
a copy of the program where variables are replaced by temp variables (lines
7-9), and (3) �nal assignments from temp to sink variables (lines 12-15). It is
obvious that the meaning of the program is preserved in the transformation.

Next, we de�ne the new labeling function for component variables. As il-
luminated by annotations in Figure 6, for any component variable Comp.x that
the component Comp is labeled as ` in nontransitive policy, we label (source)
variables Comp.x as {`}, Comp.x_temp as the top element of the security lattice,
i.e., the set of all nontransitive labels, and Comp.x_sink as the set of nontran-
sitive labels that can �ow to the variable, i.e., C (`). Thus, information �ows
from source variables (labeled {`}) to sink variables (labeled C (`)) are carried
through internal temp variables. In Section 3, we show how the presented
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1 // init
2 Alice.data_temp := Alice.data;
3 Bob.data1_temp := Bob.data1;
4 Bob.data2_temp := Bob.data2;
5 Charlie.data_temp := Charlie.data;
6

7 Bob.data1_temp := Alice.data_temp;
8 Charlie.data_temp := Bob.data2_temp;
9 Charlie.data_temp := Bob.data1_temp;

10

11 // final
12 Alice.data_sink := Alice.data_temp;
13 Bob.data1_sink := Bob.data1_temp;
14 Bob.data2_sink := Bob.data2_temp;
15 Charlie.data_sink := Charlie.data_temp;

Figure 7: Canonical version of the running example.

type system updates the type of temp variables based on data and control
�ows and veri�es whether the �nal assignments are secure.

Having the described labeling function, the canonical version of the given
program does not satisfy the transitive policy. By tracking the sequence of
lines 2, 7, 9, and 15 in Figure 7, an explicit �ow from {A} (level of Alice.data)
to {B ,C } (level of Charlie.data_sink) is identi�ed, which is not permitted
with respect to the transitive policy ({A} * {B ,C }). However, similar to the
original program and the nontransitive policy, if the program did not include
the undesired �ow, the program would be considered secure.

Algorithm 1: Canonicalization algorithm for batch-job programs.
Input : Program c
Output: Program Canonical (c)
init := “”
final := “”
foreach x ∈Varc do

c [x 7→ xtemp]
init := init ++ “xtemp := x ;”
final := final ++ “; xsink := xtemp”

end
Canonical (c) := init ++ c ++ final
return Canonical(c)
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Program canonicalization Algorithm 1 explains the transformation for
batch-job programs. First, for each variable x in the program, we allocate
two fresh variables xtemp ,xsink ∈Var \Varc , and then apply the following
transformation on the given program. We use ++ to denote the operator
for string concatenation and the notation c [x 7→ xtemp] indicates renaming
all occurrences of x in program c to xtemp (in a capture-avoiding manner).
We use Vartemp and Varsink to point to the set of temp and sink variables,
respectively.

We prove that the canonical version of the program keeps the meaning
and termination behavior of the original program, yet the �nal values of vari-
ables are in the sink variables.

Lemma 1 (Semantic Equivalence Modulo Canonicalization). For any program
c, the semantic equivalence 'C between the programs c and Canonical (c)
holds, where

c 'C c′
∆= ∀M .

(
〈c,M 〉 −→∗〈stop,M ′〉 ⇐⇒ 〈c′ ,M 〉 −→∗〈stop,M ′′〉

)
∧

∀x ∈Varc .
(
M ′(x ) = M ′′(xtemp) = M ′′(xsink )∧M (x ) = M ′′(x )

)
.

The following lemmas are intermediate steps to show how a nontran-
sitive policy on a given program is reduced to a transitive policy using the
powerset lattice resulted from the set of nontransitive labels in combination
with the canonical version of the program. Lemma 2 proves that the trans-
formation holds a program secure with respect to a nontransitive policy if
and only if the original program is secure.

Lemma 2 (NTNITI Preservation under Canonicalization). Any program c
is secure with respect to a nontransitive security policy N if and only if
the canonical program Canonical (c) is secure where ∀x ∈Varc .ΓN (xtemp) =
ΓN (xsink ) = ΓN (x). Formally,

∀c.∀N .NTNITI (N ,c) ⇐⇒ NTNITI (N ,Canonical (c)).

We de�ne the powerset encoding of a nontransitive policy to a transitive
policy for canonical programs as follows.

De�nition 5 (Transitive Encoding of Nontransitive Policies). Given a non-
transitive policyN = 〈LN , D,ΓN 〉 and a program c, the corresponding tran-
sitive policy T = 〈LT , v,ΓT 〉 on the canonical version of the program is
LT = ℘(LN ),v =⊆, and

∀x ∈Varc .


ΓT (x) = {ΓN (x)}
ΓT (xtemp) = LN

ΓT (xsink ) = C (ΓN (x))

.
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As stated in De�nition 5, the initial and �nal values of an `-observable
variable x of the given program are {`}- and C (`)-observable in the canonical
version, respectively. Also, temp variables are internal and the top-level ob-
server only can see their �nal values, thus LN -observable. The next lemma
demonstrates for any canonical program satisfying a nontransitive policy,
the program also complies with a corresponding transitive policy and vice
versa.

Lemma 3 (From NTNITI to TNITI for Canonical Programs). Any canon-
ical program Canonical (c) is secure with respect to a nontransitive security
policy N where ∀x ∈Varc .ΓN (xtemp) = ΓN (xsink ) = ΓN (x) if and only if
the canonical program is secure according to the corresponding transitive se-
curity policy T . We write ∀c.∀N .∃T . NTNITI (N ,Canonical (c)) ⇐⇒
TNITI (T ,Canonical (c)).

Finally, by connecting the previous lemmas, we prove that any nontran-
sitive policy on a given program can be modeled as a transitive policy on the
canonical version of the program. Given Theorems 1 and 2, the two notions
of transitive and nontransitive noninterference coincide.

Theorem 2 (From NTNITI to TNITI ). For any program c and any
nontransitive security policy N = 〈LN , D ,ΓN 〉, there exist a semanti-
cally equivalent (modulo canonicaliztion) program c′ and a transitive se-
curity policy T = 〈LT , v,ΓT 〉, as speci�ed in De�nition 5, such that
NTNITI (N ,c) ⇐⇒ TNITI (T ,c′). Formally,

∀N .∀c.∃T .∃c′ .c 'C c′ ∧NTNITI (N ,c)⇐⇒ TNITI (T ,c′).

3 Enforcement transpiled

The proposed enforcement mechanism for nontransitive policies [17] is a
type system that does not use subtyping, the classical way to check transi-
tive types, for information �ow veri�cation. Instead, it tracks dependencies
between program variables and collects all security labels of �ows into a com-
ponent variable throughout the program. Then it checks whether the �ows
comply with the speci�ed policy. Therefore, the type system can enforce
both nontransitive and transitive policies.

To enforce a nontransitive policy, however, we can bene�t from the tran-
spilation introduced in Section 2 and devise a transitive type system for
canonical programs. We employ a (vanilla) �ow-sensitive type system [14]
enforcing the corresponding transitive policy on transformed programs. The
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Transpiler Flow-Sensitive
Type System

Program

Nontransitive
Policy

Transformed
Program

Transitive
Policy

Accept/Reject

Figure 8: Composition of transpiler and enforcement mechanism.

�ow-sensitivite type system investigates how components in�uence vari-
ables of the program. Figure 8 illustrates the composition of the transpiler
and the enforcement mechanism.

We prove soundness of our transitive type system (Figure 9) and investi-
gate how it relates to the nontransitive type system. Inspired by the notion,
we present a nontransitive type system for our model language (Figure 10)
and prove the soundness property. Then, we show that the �ow-sensitive
transitive type system accepts more secure programs compared to the non-
transitive one.

3.1 Enforcement mechanism

We present a �ow-sensitive type system that enforces transitive policies
for canonical programs. The type system allows updates of security types
through typing the program. When an expression is assigned to a variable,
the security type of the variable changes to the join of security types of the
expression and the program counter, to capture explicit and implicit �ows
(arisen from control dependencies) to the variable.

For a command c, judgments are in the form of pc `Γ {c}Γ ′ , where
pc ∈ LT is the program counter label and the typing environment
Γ : Var → LT will be updated to Γ ′ after execution of c. We make use of
the structure of canonical programs in the typing rules, presented in Figure 9.
The two rules for assignments (rulesTT-Write-I andTT-Write-II) represent
the essence of the type system. We know that only temp and sink variables
can be on the left-hand side of an assignment in a canonical program. As-
signments to sink variables occur at the end of the program, i.e., the �nal
section, where the right-hand side of assignments are temp variables (rule
TT-Write-II). The type system allows changes to the security types, except
for sink variables, whose initial types must be kept (rule TT-Sub). Otherwise,
upgrading security levels of sink variables might violate the soundness prop-
erty of the type system.
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Γ `v :⊥ (TT-Value)

Γ `x : Γ (x ) (TT-Read)

Γ `e1 : t1 Γ `e2 : t2

Γ `e1 ⊕ e2 : t1 t t2
(TT-Operation)

pc `Γ {skip}Γ (TT-Skip)

Γ `e : t x ∈Vartemp

pc `Γ {x := e}Γ [x 7→ pc t t]
(TT-Write-I)

x ′ ∈Vartemp x ∈Varsink
pc t Γ (x ′)vΓ (x )
pc `Γ {x := x ′}Γ

(TT-Write-II)

Γ `e : t
pc t t `Γ {ctrue }Γ ′
pc t t `Γ {cfalse }Γ ′

pc `Γ {if e then ctrue else cfalse }Γ ′
(TT-If)

Γ `e : t pc t t `Γ {cbody }Γ
pc `Γ {while e do cbody }Γ

(TT-While)

pc `Γ {c1}Γ ′ pc `Γ ′{c2}Γ ′′

pc `Γ {c1; c2}Γ ′′
(TT-Seq)

pc1 `Γ1{c}Γ ′1
pc2vpc1 Γ2vΓ1 Γ ′1vΓ

′
2

∀x ∈Varsink .Γ1(x ) = Γ2(x ) = Γ ′1(x ) = Γ ′2(x )

pc2 `Γ2{c}Γ ′2
(TT-Sub)

Figure 9: Transitive typing rules.
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Γ `v : ∅ (NT-Value)

Γ `x : Γ (x ) (NT-Read)

Γ `e1 : t1 Γ `e2 : t2

Γ `e1 ⊕ e2 : t1 ∪ t2
(NT-Operation)

P ,Γ ,pc `skip : t
(NT-Skip)

Γ `e : t Γ `x : t
∀` ∈ t ∪ pc.` ∈ Γ (x )∧ `DP (x )

P ,Γ ,pc `x := e : t
(NT-Write)

Γ `e : t1
P ,Γ ,pc ∪ t1 `ctrue : t2
P ,Γ ,pc ∪ t1 `cfalse : t2

P ,Γ ,pc ` if e then ctrue else cfalse : t1 ∪ t2

(NT-If)

Γ `e : t1 P ,Γ ,pc ∪ t1 `cbody : t2

P ,Γ ,pc `while e do cbody : t1 ∪ t2
(NT-While)

P ,Γ ,pc `c1 : t1 P ,Γ ,pc `c2 : t2

P ,Γ ,pc `c1; c2 : t1 ∪ t2
(NT-Seq)

Γ `e : t1 t1 ⊆ t2

Γ `e : t2
(NT-Sub-I)

P ,Γ ,pc1 `c : t1
pc2 ⊆ pc1 t1 ⊆ t2

P ,Γ ,pc2 `c : t2

(NT-Sub-II)

Figure 10: Nontransitive typing rules.

123



3. Nontransitive Policies Transpiled

Running example Given the policy speci�ed in the running example,
the type system rejects the canonical program shown in Figure 7. The
initial types of the variables are the sets of labels introduced in De�ni-
tion 5. Applying the typing rules, the types of the variables Alice.data_temp,
Bob.data1_temp, and Charlie.data_temp are (at least) the same as the type
of Alice.data, which is {A}. The assignments in the �nal section are well-
typed except for the last one, where the type of Charlie.data_sink is the
set of labels can �ow to C , i.e., {B ,C }. Since {A} * {B ,C }, the program is
ill-typed with respect to the given nontransitive policy. We will discuss more
examples in Section 5.

The next theorem states soundness of the �ow-sensitive type system,
which means if the type system accepts a canonical program, then the pro-
gram satis�es the transitive noninterference, and consequently, the original
program complies with the nontransitive policy.

Theorem 3 (Soundness of Flow-Sensitive Transitive Type System).

pc `ΓT {Canonical (c)}Γ ′ =⇒ TNITI (T ,Canonical (c)).

3.2 Relationship between nontransitive and flow-sensitive
transitive type systems

The core idea of Lu and Zhang’s type system [17] is tracking data and control
dependencies between program variables through type inference on infor-
mation propagation history. Then it guarantees �ow relations from inferred
labels of dependencies to the speci�ed label of the variable are stated in the
policy. Their �ow-insensitive type system captures all possible dependen-
cies to a variable; thus it becomes less permissive in comparison with a �ow-
sensitive type system. Given the semantic relationship between nontransi-
tive and transitive policies, we demonstrate our �ow-sensitive transitive type
system accepts all the well-typed programs in the nontransitive type system,
and more secure programs.

We present a nontransitive type system for our imperative model lan-
guage based on the essence of their type system. It aggregates security labels
of data and control dependencies of variables through the program. For each
assignment x := e , the type system checks permission of information �ows
from the collected labels of the expression e and the program counter to the
speci�ed label of the variable x .

Typing judgments are in the form of P ,Γ ,pc `c : t that indicates the type
t is assigned to the command c with respect to the program counter label
pc ⊆ LN in the typing environments P : Var → LN and Γ : Var → ℘(LN )
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3. Enforcement transpiled

where ∀x ∈ Var .P (x ) ∈ Γ (x ). Figure 10 illustrates the typing rules where P
speci�es the nontransitive levels of variables and Γ predicts the set of labels
that might in�uence the �nal value of a variable in the program.

The most important rule is the one for typing assignments (rule NT-
Write). The set Γ (x ) must contain all possible information �ows to the
variable x in the program, which is checked in the premise (t ∪ pc ⊆ Γ (x )),
and then the type system veri�es whether those are permitted �ows or not
(∀` ∈ t ∪ pc.`DP (x )). Note that the speci�ed label of a variable P (x ) must
be present in the set of dependencies Γ (x ) because the D relation is re�exive.
Running example The nontransitive type system tracks and collects all
the security labels a variable has a dependency on through the program and
checks whether they are compliant with the permitted �ows. Therefore, the
program presented in Figure 3 is rejected by the type system because the
type of Bob.data1 must be (at least) {A,B } to record the type of Alice.data,
which is {A} and ADB exists in the policy. Consequently, the last assignment
is ill-typed respecting the typing environment and absence of ADC in the
policy.

In the following, we prove soundness of the nontransitive type system.
Any well-typed program with respect to the nontransitive typing rules sat-
is�es nontransitive noninterference.

Theorem 4 (Soundness of Nontransitive Type System).

P ,Γ ,pc `c : t =⇒ NTNITI (N ,c).

On closer inspection, both type systems are sound but the nontransitive
type system is not as permissive as the �ow-sensitive mechanism. The �ow-
sensitive transitive type system updates the labels of variables based on the
�ow of the program in a more precise manner. The next theorem shows if
a program is secure under the nontransitive type system, the �ow-sensitive
type system accepts the canonical version of the program as well.

Theorem 5 (Flow-Sensitive Type System Covers Nontransitive Type System).

P ,Γ1,pc `c : t =⇒ pc `Γ2{Canonical (c)}Γ3,

where ∀x ∈ Varc .Γ3(xtemp) v Γ1(x ) ∧ Γ2(x ) = Γ3(x ) = {P (x )} ∧ Γ2(xtemp) =
LN ∧ Γ2(xsink ) = Γ3(xsink ) = C (P (x )).

The counterexample program in Figure 11 demonstrates the theorem
does not hold in the other direction; there is a well-typed program according
to the �ow-sensitive rules, which gets rejected by the nontransitive type sys-
tem. If we swap the last two statements of the running example, as shown
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in Figure 11, the nontransitive type system still rejects the program; types of
both sides of an assignment must be the same (rule NT-Write). The �ow-
sensitive type system, however, accepts the program because it detects that
the last assignment overwrites the �nal value of Charlie.data and updates
the label accordingly (rule TT-Write-I). It can be shown that adding �ow-
sensitivity �avor to the nontransitive type system enhances precision to the
same level o�ered by the �ow-sensitive transitive type system.

1 // Bob.receive(data)
2 Bob.data1 := Alice.data;
3 // Bob.bad()
4 Charlie.data := Bob.data1;
5 // Bob.good()
6 Charlie.data := Bob.data2;

Figure 11: An example that shows the �ow-sensitive type system is more
permissive than the nontransitive type system.

4 Extension with I/O

We extend the model language to support input and output commands. In
this setting, sources and sinks of information are more tangible, as a better �t
for real-world programs with third-party components. Interestingly, we will
observe a more natural correspondence between nontransitive and transitive
security notions.

4.1 Security notions

Programs can receive inputs and produce outputs at any step of computa-
tion. We include two new constructs input(x , `) and output(x , `) for read-
ing a value from the input channel at security level ` and sending a value to
the output channel at level `, respectively. This model entails a revision on
security notions where intermediate output values are observable as well as
the termination behavior of a program.

We naturally choose another notion of noninterference named progress-
insensitive [3, 13] (corresponding to CP-security for reactive programs [5])
that demands if two program inputs agree on values at security levels may
in�uence variables at `, the output sequence observable at level ` remains
the same up to the point that one of the executions diverges silently (with-
out producing any output). Transitive policies de�ne an input/output value
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`-observable if the value is at level ` or lower, while an `-observer in a non-
transitive policy only sees values at level `. Note that the termination behav-
ior of a program is observable for all security levels in both security notions.
Running example Recall the nontransitive policy of the running example
in Section 2: ADB and B DC . The program in Figure 12 violates progress-
insensitive nontransitive noninterference due to the presence of an implicit
�ow from the input value of Alice.data with security level A to the ob-
servable output at level C . Based on the input value, the program sends an
output value at level B or C . Therefore, the observable outputs are di�erent
at levels B and C , depending on the input value at level A.

1 input(Alice.data, A);
2 Bob.data1 := Alice.data;
3 if Bob.data1 then
4 output(Bob.data2, B);
5 else
6 output(Charlie.data, C);

Figure 12: Running example with I/O.

Figure 13 illustrates the syntax of our model language supporting I/O.
Evalution rules for input and output commands are presented in Figure 14.
We refer to Figure 24 (in Appendix) for the complete set of semantic rules.
An execution con�guration 〈c,M ,I ,O〉 is a tuple consists of a command c,
a memory M , an input function I that maps security levels to input chan-
nels, and an output channel O . The relation→ de�nes transitions between
con�gurations. We assume the environment is input total. We model pro-
gram inputs as a mapping from security levels to sequences of values, written
I (`) = v .σ , where ` ∈ L, v ∈Val , and σ is a sequence of values. We de�ne
output behavior of a program recursively by O = ∅ | � |v`.O , where� de-
notes silent divergence. Based on the language semantics, we abstract away
details of computation steps and de�ne output evaluation of an execution.
De�nition 6 introduces the new relation{ that indicates an initial con�gu-
ration 〈c,M ,I ,∅〉 evaluates to O .

e ::= v | x | e ⊕ e
c ::= skip | x := e | if e then c else c | while e do c | c;c |

input(x , `) | output(x , `)

Figure 13: Language syntax with I/O.
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c = input(x , `) I (`) = v .σ
I ′ = I [` 7→ σ ] M ′ = M [x 7→ v ]

〈c,M ,I ,O〉 → 〈stop,M ′,I ′ ,O〉
(IO-Input)

c = output(x , `)
M (x ) = v O ′ = O .v`

〈c,M ,I ,O〉 → 〈stop,M ,I ,O ′〉
(IO-Output)

Figure 14: Language semantics with I/O (selected rules).

De�nition 6 (Output Behavior of A Program Execution). The output behav-
ior O generated by an initial execution con�guration 〈c,M ,I ,∅〉, written
〈c,M ,I ,∅〉{O , is de�ned as follows:

〈c,M ,I ,∅〉−→∗〈stop,M ′ ,I ′ ,O〉
〈c,M ,I ,∅〉{O

〈c,M ,I ,∅〉−→∗〈c′ ,M ′ ,I ′ ,O〉
∀n ∈N.〈c′ ,M ′ ,I ′ ,O〉−→n〈cn ,Mn ,In ,O〉 ∧ cn , stop

〈c,M ,I ,∅〉{O .�
.

TransitiveNoninterference (TNI)Classical noninterference guarantees `-
observable output behavior of a program only depends on inputs from ` or
lower levels. A transitive security policy T = 〈LT , v ,ΓT 〉 is a triple where LT
is a set of security labels and v ⊆ LT ×LT is a binary relation that speci�es
permitted �ows between security levels forming a partially ordered set on
LT . A labeling function ΓT : Var → LT maps a variable to a security label.

The de�nition of progress-insensitive noninterference relies on the de�-
nition of indistinguishability relations for inputs and outputs. To de�ne the
relations, we should �rst describe observable inputs and outputs at a security
level `. An `-observer can see the content of input channels at the security
level ` and lower. We de�ne observable output behavior at a level ` ∈ LT by
purging the values from an output sequence which are not at the level ` or
lower.

De�nition 7 (Transitive Observable Output Behavior). Given an output be-
havior O including a sequence of output values and termination behavior of
a program execution. The subsequence of the output behavior observable at
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a security level ` ∈ LT is de�ned below:

O |T` =


O O = ∅ ∨O =�

v`′ .O
′ |T
`

O = v`′ .O
′ ∧ `′v `

O ′ |T
`

otherwise

.

We call two program inputs indistinguishable at level ` ∈ LT if input se-
quences of the levels ` are the same as well as lower levels.

De�nition 8 (Transitive Input Indistinguishability). Two program inputs I1

and I2 are indistinguishable at level ` ∈ LT , written I1
`=T I2, if and only if

∀`′v `.I1(`′) = I2(`′).

Two program outputs are indistinguishable at level `when the sequences
of observable outputs are exactly the same up to the silent divergence in one
of them. In other words, if both of the output behaviors are terminating,
then the `-observable subsequences must be identical. Otherwise, the sub-
sequences must be the same until one of them reaches the� event.

De�nition 9 (Transitive Output Indistinguishability). Two program outputs
O1 and O2 are indistinguishable at level ` ∈ LT , written O1

`=T O2, if
and only if O1|T` = O2|T` ∨ (∃O ,O ′ .O1|T` = O .� ∧O2|T` = O .O ′) ∨
(∃O ,O ′ .O1|T` = O .O ′ ∧ O2|T` = O .�).

Given the indistinguishability de�nitions, we are ready to de�ne the se-
curity condition. A program c satis�es progress-insensitive transitive nonin-
terference, written TNIPI (T ,c), when for any two program inputs indistin-
guishable at level ` ∈ LT , the output behaviors resulted from the execution
of the program are indistinguishable for the `-observer.

De�nition 10 (Progress-Insensitive Transitive Noninterference). A program
c satis�es TNIPI (T ,c) if and only if ∀` ∈ LT .∀M .∀I1,I2.I1

`=T I2 ∧
〈c,M ,I1,∅〉{O1 =⇒ ∃O2.〈c,M ,I2,∅〉{O2 ∧ O1

`=T O2.

Nontransitive Noninterference (NTNI) The nontransitive notion of non-
interference stipulates that `-observable output behavior of a given program
is only dependent on those inputs that can �ow to `, as stated in the policy. A
nontransitive security policy N = 〈LN , D ,ΓN 〉 is a triple where LN is a set
of security labels, D is an arbitrary �ow relation specifying permitted �ows,
and ΓN : Var → LN is a labeling function.
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3. Nontransitive Policies Transpiled

Similar to the transitive notion, we de�ne indistinguishability relations
for program inputs and outputs with respect to de�nitions of observable in-
puts and outputs at a security level, respectively. An `-observer can see the
content of the input channel at the level ` and the subsequence of output
values at the level ` as well as the divergence event.

De�nition 11 (Nontransitive Observable Output Behavior). Given an output
behavior O including a sequence of output values and termination behavior
of a program execution. The subsequence of the output behavior observable
at a security level ` ∈ LN is de�ned as follows:

O |N
`

=


O O = ∅ ∨O =�

v`.O
′ |N
`

O = v`.O
′

O ′ |N
`

otherwise

.

Two program inputs are indistinguishable for a set of levels L ⊆ LN if
input sequences of the levels member of L are identical with each other.

De�nition 12 (Nontransitive Input Indistinguishability). Two program in-
puts I1 and I2 are indistinguishable for a set of levels L ⊆ LN , written
I1
L=N I2, if and only if ∀` ∈ L.I1(`) = I2(`).

Similar to De�nition 9, two program outputs are indistinguishable at
level ` ∈ LN if the sequences of observable outputs are the same until one of
the executions diverges silently.

De�nition 13 (Nontransitive Output Indistinguishability). Two program out-
puts O1 and O2 are indistinguishable at level ` ∈ LN , written O1

`=N O2,
if and only if O1|N` = O2|N` ∨ (∃O ,O ′ .O1|N` = O .� ∧O2|N` = O .O ′) ∨
(∃O ,O ′ .O1|N` = O .O ′ ∧ O2|N` = O .�).

Having the indistinguishability relations in hand, we de�ne the noninter-
ference notion for the nontransitive setting. A program c satis�es progress-
insensitive nontrasnitive noninterference, written NTNIPI (N ,c), when for
any two program inputs indistinguishable for the set of levels may in�uence
variables at level ` ∈ LN , the output behaviors resulted from the execution
of the program are indistinguishable for the `-observer.

De�nition 14 (Progress-Insensitive Nontransitive Noninterference). A pro-
gram c satis�es NTNIPI (N ,c) if and only if
∀` ∈ LN .∀M .∀I1,I2.I1

C (`)
= N I2 ∧ 〈c,M ,I1,∅〉{O1 =⇒

∃O2.〈c,M ,I2,∅〉{O2 ∧ O1
`=N O2.
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4.2 Relationship between NTNI and TNI

We follow the same pattern to relate nontransitive and transitive security
de�nitions together. Constructing the power-lattice encoding remains as
before, although the transformation algorithm is more straightforward for
programs with input/outputs. Before we see that, the next theorem con�rms
NTNI is still a generalization of TNI using the progress-insensitive notion in
the security de�nitions.

Theorem 6 (From TNIPI to NTNIPI ). For any program c and any tran-
sitive security policy T = 〈LT , v ,ΓT 〉, there exists a nontransitive security
policy N = 〈LN , D ,ΓN 〉 where LN = LT ,D = v∗,and ΓN = ΓT such that
TNIPI (T ,c) ⇐⇒ NTNIPI (N ,c). Formally,

∀c.∀T .∃N .TNIPI (T ,c) ⇐⇒ NTNIPI (N ,c).

We introduce the transpilation for programs with intermediate in-
put/outputs. Similar to the batch-job style, we establish the powerset lat-
tice out of nontransitive labels, i.e., LT = ℘(LN ) and v =⊆. However, the
transformation algorithm is quite simpler than canonicalization; only input
and output commands are required to be rewritten because of the new secu-
rity de�nition that considers only the relation between program inputs and
outputs.
Program transformation As explained in Algorithm 2, we label sources
of information at a security level ` ∈ LN as the singleton set of a security
level ({`}) and annotate sinks as the set of labels that can �ow to `, or C (`).
More precisely, we replace input(x , `) commands with input(x , {`}), and also
output(x , `) commands with output(x ,C (`)) in the program.

Algorithm 2: Transformation algorithm for programs with I/O.
Input : Program c
Output: Program Transform(c)
foreach x ∈Varc do

c [input(x , `) 7→ input(x , {`})]
c [output(x , `) 7→ output(x ,C (`))]

end
Transform(c) := c
return Transform(c)

Running example Figure 15 demonstrates how the transformation works
on the running example. Each output command explicitly speci�es the set
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1 input(Alice.data, {A});
2 Bob.data1 := Alice.data;
3 if Bob.data1 then
4 output(Bob.data2, {A,B});
5 else
6 output(Charlie.data, {B,C});

Figure 15: Transformed version of running example with I/O.

of labels that are permitted to in�uence the output value. The transformed
program does not satisfy transitive noninterference because the presence of
output value at level {B ,C } depends on an input value at level {A}, which
are incomparable in the security lattice. However, the �ow from the input
value to the output value at level {A,B } is permitted because {A} ⊆ {A,B }.

It is obvious that the transformed version of a given program preserves
the meaning and termination behavior of the original program, yet it changes
the channel of output values. The input and output values at the level ` can
be found on the input channel with label {`} and the output channel labeled as
C (`) in the canonical version of the given program. The next lemma shows
the semantic relation between a given program and the transformed one.

Lemma 4 (Semantic Equivalence Modulo Transformation). For any program
c, the semantic equivalence 'T between the programs c and Transform(c)

holds where c 'T c′
∆= ∀M .∀I .∃I ′ .

(
∀`.I (`) = I ′({`})

)
∧ 〈c,M ,I ,∅〉{ O ∧

〈c′ ,M ,I ′ ,∅〉{O ′ ∧O ′ = O [v` 7→ vC (`)].

Then, we prove a nontransitive policy on a given program (with inter-
mediate inputs/outputs) can be reduced to a transitive policy on the trans-
formed version of the program. Theorems 6 and 7 demonstrate the mutual
relationship between NTNI and TNI holds, even for programs with interme-
diate observable values.

Theorem 7 (From NTNIPI to TNIPI ). For any program c and any non-
transitive security policy N = 〈LN , D ,ΓN 〉, there exist a semantically equiv-
alent (modulo transformation) program c′ and a transitive security policy
T = 〈LT , v ,ΓT 〉 where c′ = Transform(c), LT = ℘(LN ), v =⊆ and ∀x ∈
Varc .ΓT (x) = {ΓN (x)} such that NTNIPI (N ,c) ⇐⇒ TNIPI (T ,c′). For-
mally,

∀N .∀c.∃T .∃c′ .c 'T c′ ∧NTNIPI (N ,c)⇐⇒ TNIPI (T ,c′).
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4.3 Enforcement mechanism

Figure 16 illustrates an excerpt from a �ow-sensitive type system enforc-
ing transitive policies on transformed programs. We refer to Figure 25 (in
Appendix) for the complete set of typing rules. The type system de�nes
judgments of the form pc `Γ {c}Γ ′ where pc ∈ LT is the program counter la-
bel, and the typing environments Γ : Var → LT and Γ ′ describe the security
levels of variables before and after executing the command c, respectively.
Security types of the variables get updated freely through the program and
capture the information �ows to the variable (rule IO-TT-Write).

Γ `e : t

pc `Γ {x := e}Γ [x 7→ pc t t]
(IO-TT-Write)

pcv `
pc `Γ {input(x , `)}Γ [x 7→ `]

(IO-TT-Input)

pc t Γ (x )v `
pc `Γ {output(x , `)}Γ

(IO-TT-Output)

Figure 16: Flow-sensitive typing rules with I/O (selected rules).

The rules for typing input and output commands are the most important
ones. The typing environments before and after executing an output com-
mand stay the same if the explicit �ows (Γ (x )) and implicit �ows (pc) are
permitted to the level of the speci�ed output channel (rule IO-TT-Output).
For an input command input(x , `), the level of variable x is updated to ` if the
program context does not make an illegal implicit �ow (rule IO-TT-Input).
Otherwise, it might violate soundness of the enforcement mechanism for
programs like Figure 17, where the execution of an input command in a high
context in�uences the received value of the next input command at the same
level.
Running example Given the policy speci�ed in the running example, the
type system rejects the transformed program shown in Figure 15. The initial
types of the variables are the singleton set of the nontransitive security label.
Following the typing rules, the types of the variables Alice.data_temp and
Bob.data1_temp are (at least) {A}. The rule for output commands demands
that the speci�ed level of the output value must be higher than union of the
level of the program context and the level of variable x . The if branch is well-
typed because {A}t {B }v{A,B }, yet the type system cannot o�er a suitable
type for the else branch where {A} t {B }@ {B ,C }.
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1 if High.h then
2 input(Low.x,{L})
3 else
4 skip;
5 input(Low.y,{L});
6 output(Low.y,{L});

Figure 17: An example that shows an implicit �ow by input commands.

Theorem 8 states soundness of the type system. If a transformed program
is well-typed, then it satis�es the transitive noninterference, and by the re-
sult of Theorem 7, the original program complies with the corresponding
nontransitive policy.

Theorem 8 (Soundness of Flow-Sensitive Type System for Programs with I/O).

pc `ΓT {Transform(c)}Γ ′ =⇒ TNIPI (T ,Transform(c)).

5 Case study with JOANA

We develop a prototype of our transpiler to analyze Java programs. We follow
the architecture illustrated in Figure 8 to implement a program canonicalizer
and an input script generator for JOANA [11], a �ow-sensitive information-
�ow analyzer for Java programs. The transpiler gets a path to a Java project
and generates the canonical version of the program using Spoon [21], a li-
brary for transforming Java programs. The user de�nes a nontransitive pol-
icy by labeling the components (i.e., classes) of the program. Then, our tool
generates a script as the input of JOANA, which detects possible illegal �ows
in the program. Our proof-of-concept implementation can support as many
programs as JOANA may allow, as long as they are batch-job programs.

We evaluate our tool on four examples of nontransitive policies to
demonstrate the bene�ts of the reduction from nontransitive to transitive
policies in practice: Alice-Bob-Charlie (the running example), Confused
deputy, Bank logger, and Low-High. The source code and materials of case
studies are available online [1]. We discuss the details of transpilation and
the JOANA’s script for the running example, and to conserve space, we only
report analysis results for the next cases. In Appendix 3.B, the source code
of the programs in question is presented.
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1 public class Alice {
2 private int data_source = 0,data,data_sink;
3 private Bob b;
4 public void initiator(){ data = data_source; }
5 public Alice(){ initiator(); b = new Bob(); }
6 public static void main(String[] args){
7 Alice a = new Alice();
8 a.operation();
9 a.finalizer();

10 }
11 private void operation(){
12 b.receive(data);
13 b.good();
14 b.bad();
15 }
16 public void finalizer(){ data_sink = data; b.finalizer(); }
17 }

1 public class Bob {
2 private int data1_source=0,data1,data1_sink;
3 private int data2_source=1,data2,data2_sink;
4 private Charlie c;
5 public void initiator(){
6 data1 = data1_source;
7 data2 = data2_source;
8 }
9 public Bob(){ initiator(); c = new Charlie(); }

10 public void receive(int x){ data1 = x; }
11 public void good(){ c.receive(data2); }
12 public void bad(){ c.receive(data1); }
13 public void finalizer(){
14 data1_sink = data1;
15 data2_sink = data2;
16 c.finalizer();
17 }
18 }

1 public class Charlie {
2 private int data_source, data, data_sink;
3 public void initiator(){data = data_source;}
4 public Charlie(){ initiator(); }
5 public void receive(int x){ data = x; }
6 public void finalizer(){ data_sink = data; }
7 }

Figure 18: The canonical version of Alice-Bob-Charlie.
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5.1 Alice-Bob-Charlie (the running example)

We start with the running example as the �rst case, introduced in Figure 1.
To model the batch-job style, we modify the code to include instances of
components as �elds of Java classes. Following standard practices in object-
oriented programming, our prototype leverages composition relationship [24]
between classes where an object is a part of another object. This leads to a
hierarchy of objects, in which each object is responsible for creation and
deletion of required objects of other classes. Assuming that no local variable
creates a new instance of a class, the execution starts from the main object
and continues in the underlying ones.

Given the main method as the starting point of the program, constructors
naturally provide placeholders for inserting the init section (initiator meth-
ods), while the last line of the main method is the placeholder for �nal as-
signments existing in �nalizer methods. By calling the �nalizer method of
the main object, following the composition hierarchy, objects invoke the �-
nalizers as a chain. In the end, all of the sink �elds are assigned.

The transpiler su�ces to inject the initiator and �nalizer methods per
class. For readability, we slightly modify the canonicalization algorithm. We
add a source �eld assigned to the initial value of the �eld in the original pro-
gram, instead of replacing occurrences of the variable with temp variables.
As an example, the canonical version of the program is shown in Figure 18.

Considering the labels A, B , and C , for Alice, Bob, and Charlie and with
respect to the permitted �ow (ADB ,B DC ), the transpiler also generates the
input script for JOANA. Figure 19 displays the important snippet of it.

The �rst line describes the power-lattice, where e denotes the empty set
as the bottom element. It is followed by the list of annotations on �eld
variables to distinguish sources and sinks of information per class. For

1 setLattice e<=A,e<=B,e<=C,A<=AB,A<=AC,B<=AB,
2 B<=BC,AB<=ABC,C<=AC,C<=BC,AC<=ABC,BC<=ABC
3 source Alice.data_source A
4 sink Alice.data_sink A
5 source Bob.data1_source B
6 sink Bob.data1_sink AB
7 source Bob.data2_source B
8 sink Bob.data2_sink AB
9 source Charlie.data_source C

10 sink Charlie.data_sink BC
11 run classical-ni

Figure 19: A snippet of JOANA script for Alice-Bob-Charlie.
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example, the line sink Charlie.data_sink BC means Charlie.data_sink

is a sink variable with the security level BC (the set of nontransitive la-
bels can �ow to C ). The last command of the script triggers the �ow-
sensitive information �ow analysis. As the result of the analysis, JOANA
reports the security violation Illegal flow from Alice.data_source to

Charlie.data_sink, visible for BC, which captures the undesired explicit
�ow.

Omitting invocation of the bad method yields a secure program. In this
case, JOANA reports No violations found after running the same script on
the canonical version of the secure program.

5.2 Confused deputy

We bene�t from the fact that nontransitive information �ow control supports
enforcing both con�dentiality and integrity policies. The confused deputy
problem [12] occurs in a situation when an untrusted component is able to
manipulate a trusted component and misuse its authority to execute a sensi-
tive operation. It is an integrity problem since the policy states if the attacker
is not permitted to alter a resource, then there must not be any way to do so,
directly or by using a deputy. We adopt Lu and Zhang’s code [17] as a starting
point to represent the confused deputy problem.

Figure 20 illustrates the skeleton of the source code. We make use
of four classes: Library, Service, Downloaded_Code, and Trusted_Code.
Values in Library are protected and only Service is privileged to access
them. The class Downloaded_Code is third-party code that cannot access
to Library, while Trusted_Code is completely trusted. Invoking addLog

method of Service is permitted because it updates a non-executable log
�le in Service, but the process method of Library must not be called with
data from Downloaded_Code via Service. To rephrase the integrity policy,
Downloaded_Code should not have any e�ects on the sensitive component
Library, directly or indirectly, while Trusted_Code can. Given the initial let-
ters of the component names as their labels, the speci�ed policy is D DS ,
S DL, T DS and T DL.

On the other hand, Downloaded_Code must not retrieve Library’s infor-
mation through invoking the query method by Service. Taking con�den-
tiality policies into account, we add �ow relations LDS , S DD , LDT , and
S DT to exclude the illegal �ows from Library to Downloaded_Code violat-
ing data secrecy. To sum up, the intended policy is the aggregation of the
integrity and con�dentiality policies, which are de�ned uniformly by the
aforementioned nontransitive �ows.
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1 public class Library {
2 private int someValue = 5, printValue = 0;
3 ...
4 public void process(int src){
5 printValue = src;
6 }
7 public int retrieve(int key){
8 return someValue;
9 }

10 }

1 public class Service {
2 private int logFile = 0;
3 private Library library;
4 ...
5 public void addLog(int x, int y){
6 logFile += x + y ;
7 }
8 public void print(int data){
9 library.process(data);

10 }
11 public int query(int key){
12 return library.retrieve(key);
13 }
14 }

1 public class Downloaded_Code {
2 private int data = 7, key = 4, result;
3 private Service service;
4 ...
5 public static void main(String[] args){
6 Downloaded_Code dc = new Downloaded_Code();
7 dc.operation();
8 }
9 private void operation(){

10 service.addLog(data, key);
11 service.print(data);
12 result = service.query(key);
13 }
14 }

Figure 20: The skeleton of Confused deputy source code.
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The transpiler generates the canonical version of the program and
annotates sources and sinks of information in classes. JOANA dis-
covers the violations in the program and reports the two existing
illegal �ows: Illegal flow from Downloaded_Code.data_source to

Library.printValue_sink, visible for LS (integrity) and Illegal flow

from Library.someValue_source to Downloaded_Code.result_sink,

visible for DS (con�dentiality).
A secure version of the program is the one without calling service.print

(data) and service.query(key) in the operation method. Now information
from Downloaded_Code (as {D}) in�uences only logFile in Service (as {D, L,
S, T}), which is allowed by the policy. JOANA also con�rms security of the
program by running the same script on the canonical version of the revised
program.

5.3 Bank logger

We discuss another example in which two bank services for processing cus-
tomers’ information (Bank) and logging their public information (Logger) are
totally separated. A client component (BankLog) is developed to communi-
cate with both services at the same time. Figure 21 focuses on the important
parts of the source code. The two components Bank and BankLog can mutu-
ally access each other’s information, although Logger may read insensitive
information. Thus, Logger must not interfere with Bank directly or indirectly.
We label Bank, Logger, and BankLog components as B , L, and C , respectively.
Consequently, the intended policy is C DB , B DC , and C DL.

The current implementation of the program violates the policy by two
implicit �ows. The getBalance method checks whether the id exists, and
BankLog only requests for logging if the sensitive value balance is positive.
Executing the JOANA script on the canonical version of the program
generates the following report: Illegal flow from Bank.id_source to

Logger.logFile_sink, visible for CL (�ow #1) and Illegal flow from

Bank.balance_source to Logger.logFile_sink, visible for CL (�ow
#2).

To secure the program, the log content must not be in�uenced by sen-
sitive information. One possible way to repair the program is logging the
number of accesses to the client component BankLog. Hence, we replace lines
7 and 8 of BankLog (in the operation method) with l.append(1). With this
change, JOANA accepts the canonical version of the program using the same
script.
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1 public class Bank {
2 private int id = 20;
3 ...
4 public int getBalance(int x){
5 if (x == id) return balance; //flow #1
6 return 0;
7 }
8 }

1 public class BankLog {
2 private int userId = 20, balance;
3 private Bank b; private Logger l;
4 ...
5 private void operation(){
6 balance = b.getBalance(userId);
7 if (balance > 0) //flow #2
8 l.append(userId);
9 }

10 }

Figure 21: An excerpt from Bank logger source code.

5.4 Low-High

The previous examples included more than two components, which allowed
us to contrast transitive and nontransitive policies. The following example
demonstrates the compatibility with the baseline case of the two-level secu-
rity policy. The program (in Appendix 3.B) contains two components Alice

and Bob, where Alice updates her data in�uenced by Bob’s secret value. We
de�ne the nontransitive policy LDH such that L is the label of Alice and H
is for Bob.

The transpiler transforms the program and generates the input script
for JOANA, as can be seen in Figure 22. Therefore, JOANA analyzes the
program and reports message Illegal flow from Bob.secret_source to

1 setLattice e<=L,e<=H,L<=LH,H<=LH
2 source Alice.data_source L
3 sink Alice.data_sink L
4 source Bob.secret_source H
5 sink Bob.secret_sink LH
6 source Bob.data_source H
7 sink Bob.data_sink LH

Figure 22: A snippet of JOANA script for Low-High.
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Alice.data_sink, visible for L expresses the security violation caused by
the implicit �ow.

Removing the illegal �ow (line 13 in Alice) makes the program secure,
which is veri�ed by running the JOANA script on the canonical version of
the modi�ed program.

6 Alternative policies and encodings

Fine-grained policies While the main motivation for nontransitive types is
enforcing coarse-grained information-�ow policies, where labels represent
components, the notion of nontransitive security is not limited to module
separation [17]. Other real-world scenarios such as policies in social me-
dia (e.g., “only my friends can see my photo but not friends of my friends”)
also naturally match nontransitive policies. Our framework can thus be gen-
eralized to decouple the �ow-to relation from component labels, allowing
�ne-grained nontransitive policies.
ScalabilityThe proposed transpiler employs the power-lattice encoding that
expands the number of security levels exponentially. For the type system,
however, its time and space complexity do not depend on the size of the lat-
tice. The reason is that we never need to store the lattice, as the �ow-to rela-
tion is implicitly derived from its elements. In an o�-the-shelf deployment of
JOANA, there is no time blowup, but we cannot avoid the space blowup be-
cause JOANA is lattice-agnostic. Making JOANA aware of the power-lattice
nature of the lattice (e.g., in the style of DLM [19]) can help avoiding the
blowup in the current implementation.
Alternative encodings A power-lattice encoding enables us to support de-
classi�cation and dynamic policies. However, when such generality is not
needed, we can reduce the size of the lattice by alternative encodings, with
the cost of losing granularity of information stored in security labels.

We identify the soundness constraint for a nontransitive-to-transitive
policy encoding as `D `′ ⇐⇒ `source v `′sink , where source and sink vari-
ables of a component are labeled as `source and `sink , respectively, when the
component has label ` in the nontransitive setting (recall that D is re�exive).
Note that the powerset lattice encoding indeed meets the condition because
∀`, `′ ∈ LN .`source = {`} ∧ `sink = C (`)∧

(
`D `′ ⇐⇒ {`} ⊆ C (`′)

)
(see Fig-

ure 6). Among various lattices satisfying the constraint, a minimal one is
desirable, i.e., the one with the smallest set of labels.

We present a so-called source-sink lattice encoding that satis�es the
soundness constraint and reduces the size of the lattice from exponential to
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⊥

Asource Bsource Csource

Asink Bsink Csink

T

(a)

⊥

Asource,Asink Bsource

Bsink Csource,Csink

T

(b)

Figure 23: (a) A source-sink lattice encoding for the running example; (b)
A minimal lattice.

polynomial. We start with a source-sink partial order where for all ` ∈ LN ,
there are `src , `snk ∈ LT such that `srcv `snk , due to re�exivity of the D re-
lation. Then, according to the soundness constraint, we include transitive
relations between levels based on the speci�ed nontransitive �ows. Since the
security levels must constitute a lattice, we apply the Dedekind–MacNeille
completion algorithm [4] to compute the smallest lattice containing the par-
tial order. If a unique least upper (resp. greatest lower) bound for any pairs
of source (resp. sink) levels does not exist, it adds an intermediary level be-
tween two source and two sink levels such that the intermediary level is the
lub of the source levels and the glb of the sinks. It also makes one top and one
bottom element for the lattice. Figure 23a illustrates the resulting source-sink
lattice for the running example (ADB and B DC ).

In the worst case, the size of the lattice is O(|LN |2) and the time com-
plexity of the algorithm is O(|LN |4), as proved in Appendix 3.A. Further-
more, optimization techniques can make the partial order compact, before
constructing the lattice out of it; for example, any pairs of `src and `snk coin-
cide in the partial order when one of them is only in relation with the other
one, not any other levels. Figure 23b depicts the minimal source-sink lattice
for the nontransitive policy in question; observe how Asink and Csource are
collapsed.

We demonstrate the NTNI-to-TNI tranpilation de�ned for a source-sink
lattice, in comparison with the power-lattice encoding, by replacing {`}with
`src and C (`) with `snk in the labeling function and program transformation.
In Appendix 3.A, we formally introduce the transpilation using a source-sink
lattice. We make use of the program canonicalization for batch-job programs
and de�ne the transitive encoding of a nontransitive policy based on a given
source-sink lattice (De�nition 15). We prove that any nontransitive policy on
a program can be reduced to a corresponding transitive policy on a seman-
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tically equivalent program (Theorem 9). For the enforcement mechanism,
we prove that the presented �ow-sensitive type system, while a source-sink
lattice is in place, is sound and more permissive than the nontransitive type
system (Theorems 10 and 11). Moreover, our results can be generalized to
programs with intermediate inputs and outputs, where the program trans-
formation algorithm replaces the level of input and output commands to `src
and `snk , respectively (Algorithm 3 and Theorem 12). We also prove that
the �ow-sensitive type system for programs with I/O is compatible with a
source-sink lattice (Theorem 13).

7 Related work

Our starting point is the special-purpose notions Nontransitive Noninterfer-
ence (NTNI) and Nontransitive Types (NTT) by Lu and Zhang [17]. Our work
demonstrates how to cast NTNI as classical noninterference on a lattice and
how to improve the precision of NTT by classical �ow-sensitive analysis.

Nontransitive noninterference is not to be confused by intransitive non-
interference. Intransitive noninterference was introduced by Rushby [25]
and explored by, amongst others, Roscoe and Goldsmith [23], Mantel and
Sands [18], and Ron van der Meyden [30]. Intransitive noninterference
is intended to address the where dimension of declassi�cation [27]. The
typical scenario for intransitive noninterference is ensuring that sensitive
data is passed through a trusted encryption module before it is released.
For example, security labels might be low , encrypt , and high , ordered by
high → encrypt → low while high 9 low . Like nontransitive policies,
intransitive policies do not assume transitive policies. However, there is a
fundamental di�erence between nontransitive and intransitive policies: in-
transitive noninterference allows low information to be (indirectly) depen-
dent on high . In the encryption module scenario, this means that changes
in the (high) plaintext may re�ect in the changes in the (low) ciphertext. In
contrast, nontransitive policy ADB and B DC guarantees that there are no
information dependencies from A to C whatsoever.

Further approaches to declassi�cation introduce decentralized hierar-
chies and dynamic policies. Myers and Liskov’s DLM [19] is based on tran-
sitive policies that encode ownership in the labels. The goal is to allow de-
classi�cation only if it is allowed by the owner(s) of the data. DC labels [28]
by Stefan et al. models a setting of mutual distrust without relying on a cen-
tralized principal hierarchy. DC labels incorporate formulas over principals,
modeling can-�ow-to relation by logical implication. FLAM [2] by Arden et
al. explores robust authorization to mitigate delegation loopholes in policies
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like DLM. Jia and Zdancewic [15] encode security types using authorization
logic in a programming language for access control. Their encoding does not
assume transitivity and it needs to be encoded as explicit delegations. Swamy
et al. [29] and Broberg et al. [6] explore the e�ects of dynamic policy updates
on the transitivity of �ows. Broberg et al. call a �ow time-transitive if infor-
mation leaks from A to C via B even if no �ows from A to C are allowed at
any given time. This can happen when the policy of allowing �ows from A
to B is dynamically updated to allow �ows from B to C . Time-transitivity
is not in the scope of our work because our policies are static.

Rajani and Garg [22] explore the granularity of policies for information
�ow control. They show that �ne-grained type systems that track the prop-
agation of values are as expressive as coarse-grained type systems that track
the propagation of context. Vassena et al. [31] expand the study to the dy-
namic setting. Xiang and Chong [33] use opaque labeled values in their study
of dynamic coarse-grained information �ow control for Java-like languages.
However, in both cases, the considered policies are transitive. An interest-
ing avenue for future work is to explore whether these approaches can be
integrated with ours to be able to handle nontransitive policies.

Our proof-of-concept implementation of the �ow-sensitive analysis for
Java draws on Hammer and Snelting’s JOANA [10, 11]. Note that our re-
duction results are general, enabling the use of other practical �ow-sensitive
analyses like Pidgin [16] by Johnson et al. for tracking nontransitive policies.

8 Conclusion

In order to support module-level coarse-grained information-�ow policies,
Nontransitive Noninterference (NTNI) and Nontransitive Types (NTT) have
been suggested recently as a new security condition and enforcement. In
contrast to Denning’s classical lattice model, NTNI and NTT assume no tran-
sitivity of the underlying �ow relation. NTNI and NTT, in the form they
were proposed, are nonstandard, requiring the development of nonstandard
semantic machinery to reason about NTNI and the development of nonstan-
dard enforcement techniques to track NTT.

This paper demonstrates that despite the di�erent aims and intuitions of
nontransitive policies compared to classical transitive policies, nontransitive
noninterference can in fact be reduced to classical transitive noninterference.

On the security characterization side, we show that NTNI corresponds
to classical noninterference on a lattice that records source-to-sink relations
derived from nontransitive policies. On the enforcement side, we devise a
lightweight program transformation that enables us to leverage standard
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�ow-sensitive information-�ow analyses to enforce nontransitive policies.
Further, we improve the permissiveness over the nonstandard NTT enforce-
ment while retaining the soundness. We show that our security character-
ization and enforcement results naturally generalize to a language with in-
termediate input and outputs. An immediate practical bene�t of our work is
the implication that there is no need for dedicated design and implementation
for the enforcement of nontransitive policies for practical programming lan-
guages. Instead, we can leverage state-of-the-art �ow-sensitive information-
�ow tools, which we demonstrate by utilizing JOANA to enforce nontransi-
tive policies for Java programs.
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Appendix

3.A Source-sink encoding

We de�ne the source-sink lattice encoding of a nontransitive policy to a tran-
sitive policy for canonical programs as follows.

De�nition 15 (Transitive Encoding of Nontransitive Policies). Given a non-
transitive policy N = 〈LN , D,ΓN 〉 and a program c, a corresponding tran-
sitive policy T = 〈LT , v,ΓT 〉 on the canonical version of the program is
LT ⊇ {`src , `snk |` ∈ LN } ∪ {>,⊥} and ∀`, `′ ∈ LN .`D `

′ ⇐⇒ `srcv `′snk (D
is re�exive) such that 〈LT , v〉 constitutes a lattice, and

∀x ∈Varc . ΓN (x) = ` =⇒


ΓT (x) = `src
ΓT (xtemp) = >
ΓT (xsink ) = `snk

.

As stated in De�nition 15, the initial and �nal values of an `-observable
variable x of the given program are `src- and `snk -observable in the canonical
version, respectively. Also, only the top-level observer can see �nal values
of internal temp variables, thus makes them >-observable. The next lemma
demonstrates that for any canonical program satisfying a nontransitive pol-
icy, the program also complies with a corresponding transitive policy and
vice versa.

Lemma 5 (From NTNITI to TNITI for Canonical Programs). Any canon-
ical program Canonical (c) is secure with respect to a nontransitive security
policy N where ∀x ∈Varc .ΓN (xtemp) = ΓN (xsink ) = ΓN (x) if and only if
the canonical program is secure according to a corresponding transitive se-
curity policy T . We write ∀c.∀N .∃T . NTNITI (N ,Canonical (c)) ⇐⇒
TNITI (T ,Canonical (c)).

Therefore, we prove that any nontransitive policy on a given program
can be modeled as a transitive policy on the canonical version of the program.
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Expression Evaluation

〈v ,M 〉 ⇓ v
(IO-Value)

〈x ,M 〉 ⇓M (x )
(IO-Read)

〈e1,M 〉 ⇓ v1 〈e2,M 〉 ⇓ v2

〈e1 ⊕ e2,M 〉 ⇓ v1 ⊕ v2
(IO-Operation)

Command Evaluation

〈skip,M ,I ,O〉 → 〈stop,M ,I ,O〉
(IO-Skip)

〈e ,M 〉 ⇓ v M ′ = M [x 7→ v ]

〈x := e ,M ,I ,O〉 → 〈stop,M ′ ,I ,O〉
(IO-Write)

c = if e then ctrue else cfalse 〈e ,M 〉 ⇓ b

〈c,M ,I ,O〉 → 〈cb ,M ,I ,O〉
(IO-If)

c = while e do cbody 〈e ,M 〉 ⇓ true

〈c,M ,I ,O〉 → 〈cbody ;c,M ,I ,O〉
(IO-While-T)

c = while e do cbody 〈e ,M 〉 ⇓ false

〈c,M ,I ,O〉 → 〈stop,M ,I ,O〉
(IO-While-F)

c = input(x , `) I (`) = v .σ
I ′ = I [` 7→ σ ] M ′ = M [x 7→ v ]

〈c,M ,I ,O〉 → 〈stop,M ′,I ′ ,O〉
(IO-Input)

c = output(x , `)
M (x ) = v O ′ = O .v`

〈c,M ,I ,O〉 → 〈stop,M ,I ,O ′〉
(IO-Output)

〈c1,M ,I ,O〉 → 〈c′1,M
′ ,I ′ ,O ′〉

〈c1;c2,M ,I ,O〉 → 〈c′1;c2,M
′ ,I ′ ,O ′〉

(IO-Seq-I)

〈stop;c,M ,I ,O〉 → 〈c,M ,I ,O〉
(IO-Seq-II)

Figure 24: Language semantics with I/O.

Theorem 9 (From NTNITI to TNITI ). For any program c and any
nontransitive security policy N = 〈LN , D ,ΓN 〉, there exist a semanti-
cally equivalent (modulo canonicaliztion) program c′ and a transitive se-
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Γ `v :⊥
(IO-TT-Value)

Γ `x : Γ (x )
(IO-TT-Read)

Γ `e1 : t1 Γ `e2 : t2

Γ `e1 ⊕ e2 : t1 t t2
(IO-TT-Operation)

pc `Γ {skip}Γ
(IO-TT-Skip)

Γ `e : t

pc `Γ {x := e}Γ [x 7→ pc t t]
(IO-TT-Write)

Γ `e : t
pc t t `Γ {ctrue }Γ ′
pc t t `Γ {cfalse }Γ ′

pc `Γ {if e then ctrue else cfalse }Γ ′
(IO-TT-If)

Γ `e : t pc t t `Γ {cbody }Γ
pc `Γ {while e do cbody }Γ

(IO-TT-While)

pc `Γ {c1}Γ ′ pc `Γ ′{c2}Γ ′′

pc `Γ {c1; c2}Γ ′′
(IO-TT-Seq)

pcv `
pc `Γ {input(x , `)}Γ [x 7→ `]

(IO-TT-Input)

pc t Γ (x )v `
pc `Γ {output(x , `)}Γ

(IO-TT-Output)

pc1 `Γ1{c}Γ ′1
pc2vpc1 Γ2vΓ1 Γ ′1vΓ

′
2

pc2 `Γ2{c}Γ ′2
(IO-TT-Sub)

Figure 25: Flow-sensitive typing rules with I/O.

curity policy T = 〈LT , v,ΓT 〉, as speci�ed in De�nition 15, such that
NTNITI (N ,c) ⇐⇒ TNITI (T ,c′). Formally,

∀N .∀c.∃T .∃c′ .c 'C c′ ∧NTNITI (N ,c)⇐⇒ TNITI (T ,c′).

The next theorem states that the �ow-sensitive type system is sound; in
other words, if the type system accepts a canonical program, then the pro-
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gram satis�es the transitive noninterference, and consequently, the original
program complies with the nontransitive policy.

Theorem 10 (Soundness of Flow-Sensitive Transitive Type System).

pc `ΓT {Canonical (c)}Γ ′ =⇒ TNITI (T ,Canonical (c)).

The next theorem shows if a program is secure under the nontransitive
type system, the �ow-sensitive type system accepts the canonical version of
the program as well.

Theorem 11 (Flow-Sensitive Type System Covers Nontransitive Type System).

P ,Γ1,pc `c : t =⇒ pc `Γ2{Canonical (c)}Γ3,

where ∀x ∈Varc .Γ3(xtemp)v
⊔

`∈Γ1(x )
`src∧P (x ) = ` =⇒ Γ2(x ) = Γ3(x ) = `src∧

Γ2(xtemp) =>∧ Γ2(xsink ) = Γ3(xsink ) = `snk .

We also introduce the transpilation for programs with intermediate in-
put/outputs. Similar to the batch-job style, we establish a source-sink lat-
tice out of nontransitive labels, i.e., LT ⊇ {`src , `snk |` ∈ LN } ∪ {>,⊥} and
∀`, `′ ∈ LN .`D `

′ ⇐⇒ `srcv `′snk (D is re�exive) such that 〈LT , v〉 is a lat-
tice. In the program transformation algorithm, only the levels of input and
output commands are modi�ed because the notion of progress-insensitive
noninterference only focuses on the relation between program inputs and
outputs.
Program transformation As explained in Algorithm 3, we label sources
and sinks of information at a security level ` ∈ LN as `src and `snk , respec-
tively. More precisely, we replace input(x , `) commands with input(x , `src),
and also output(x , `) commands with output(x , `snk ) in the program.

Algorithm 3: Transformation algorithm for programs with I/O.
Input : Program c
Output: Program Transform(c)
foreach x ∈Varc do

c [input(x , `) 7→ input(x , `src)]
c [output(x , `) 7→ output(x , `snk )]

end
Transform(c) := c
return Transform(c)
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Obviously, the transformed version of a given program preserves the
meaning and termination behavior of the original program, yet it changes
the channel of output values. The input and output values at the level ` can
be found on the input channel with label `src and the output channel labeled
as `snk in the canonical version of the given program. The next lemma shows
the semantic relation between a given program and the transformed one.

Lemma 6 (Semantic Equivalence Modulo Transformation). For any program
c, the semantic equivalence 'T between the programs c and Transform(c)

holds where c 'T c′
∆= ∀M .∀I .∃I ′ .

(
∀`.I (`) = I ′(`src)

)
∧〈c,M ,I ,∅〉{O ∧

〈c′ ,M ,I ′ ,∅〉{O ′ ∧O ′ = O [v` 7→ v`snk ].

Then, we prove a nontransitive policy on a given program (with interme-
diate inputs/outputs) can be reduced to a transitive policy on the transformed
version of the program.

Theorem 12 (From NTNIPI to TNIPI ). For any program c and any non-
transitive security policy N = 〈LN , D ,ΓN 〉, there exist a semantically equiv-
alent (modulo transformation) program c′ and a transitive security pol-
icy T = 〈LT , v ,ΓT 〉 where c′ = Transform(c), 〈LT , v〉 is a corresponding
source-sink lattice and ∀x ∈Varc . ` = ΓN (x) =⇒ ΓT (x) = `src such that
NTNIPI (N ,c) ⇐⇒ TNIPI (T ,c′). Formally,

∀N .∀c.∃T .∃c′ .c 'T c′ ∧NTNIPI (N ,c)⇐⇒ TNIPI (T ,c′).

Theorem 13 (Soundness of Flow-Sensitive Type System for Programs with I/O).

pc `ΓT {Transform(c)}Γ ′ =⇒ TNIPI (T ,Transform(c)).

Proof of complexity of source-sink la�ice encoding. We know that
source levels are incomparable in the source-sink partial order, the same for
sink levels. Thus, if there is not a quadruple of levels, two sources and two
sinks, such that source levels are in relation with both of the sinks, then
adding a top and a bottom element yields the smallest lattice. To do so, we
detect cycles of length four in the undirected graph of the partial order. In
the worst case, it takes

(|LN |
2

)
.O(|LN |2) = O(|LN |4) for the graph that has

2.|LN | nodes; O(|LN |2) for �nding each cycle [7, 34], and
(|LN |

2
)

cycles exist
at most. For each cycle, we add one intermediary level to the partial order,
as the unique least upper (resp. greatest lower) bound of the source (resp.
sink) levels. Hence, in the worst case, the resulting lattice adds |LN |

2

2 + 2
more levels to the partial order, thus O(|LN |2) is the size of the lattice. It is
also proven that the Dedekind-MacNeille completion takes O(r2) where r
is the number of elements in the lattice [4, 9, 20], thus O(|LN |4).
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3.B Case studies

Alice-Bob-Charlie
1 public class Alice {
2 private int data = 13;
3 private Bob b;
4 public Alice(){
5 b = new Bob();
6 }
7 public static void main(String[] args){
8 Alice a = new Alice();
9 a.operation();

10 }
11 private void operation(){
12 b.receive(data);
13 b.good();
14 b.bad();
15 }
16 }

1 public class Bob {
2 private int data1 = 0, data2 = 42;
3 private Charlie c;
4 public Bob(){
5 c = new Charlie();
6 }
7 public void receive(int x){
8 data1 = x;
9 }

10 public void good(){
11 c.receive(data2);
12 }
13 public void bad(){
14 c.receive(data1);
15 }
16 }

1 public class Charlie {
2 private int data;
3 public Charlie(){ }
4 public void receive(int x){
5 data = x;
6 }
7 }
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Confused deputy
1 public class Library {
2 private int someValue = 5;
3 private int printValue = 0;
4 public Library(){ }
5 public void process(int src){
6 printValue = src;
7 }
8 public int retrieve(int key){
9 return someValue;

10 }
11 }

1 public class Service {
2 private int logFile = 0;
3 private Library library;
4 public Service(){
5 library = new Library();
6 }
7 public void addLog(int x, int y){
8 logFile += x + y ;
9 }

10 public void print(int data){
11 library.process(data);
12 }
13 public int query(int key){
14 return library.retrieve(key);
15 }
16 }

1 public class Downloaded_Code {
2 private int data = 7, key = 4, result;
3 private Service service;
4 public Downloaded_Code(){
5 service = new Service();
6 }
7 public static void main(String[] args){
8 Downloaded_Code dc = new Downloaded_Code();
9 dc.operation();

10 }
11 private void operation(){
12 service.addLog(data, key);
13 service.print(data);
14 result = service.query(key);
15 }
16 }
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2. Nontransitive Policies Transpiled

Bank logger
1 public class Bank {
2 private int id = 20, balance = 100;
3 public Bank(){ }
4 public int getBalance(int x){
5 if (x == id)
6 return balance;
7 return 0;
8 }
9 }

1 public class Logger {
2 private static int logFile;
3 public Logger(){ }
4 public void append(int x){
5 logFile += x;
6 }
7 }

1 public class BankLog {
2 private int userId = 20, balance;
3 private Bank b;
4 private Logger l;
5 public BankLog(){
6 b = new Bank();
7 l = new Logger();
8 }
9 public static void main(String[] args){

10 BankLog bl = new BankLog();
11 bl.operation();
12 }
13 private void operation(){
14 balance = b.getBalance(userId);
15 if (balance > 0)
16 l.append(userId);
17 }
18 }

Low-High
1 public class Bob {
2 private int secret = 100, data;
3 public Bob(){ }
4 public void receive(int x){
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5 data = x;
6 }
7 public int getSecret(){
8 return secret;
9 }

10 }

1 public class Alice {
2 private int data = 10;
3 private Bob bob;
4 public Alice(){
5 bob = new Bob();
6 }
7 public static void main(String[] args){
8 Alice a = new Alice();
9 a.sendDataToBob();

10 }
11 public void sendDataToBob(){
12 bob.receive(data);
13 if (bob.getSecret() > data)
14 data++;
15 }
16 }

3.C Proofs

Proof of Theorem 1. It is straightforward because NTNI is a generalization
of TNI where the policy de�nes all possible �ows explicitly. Hence by con-
sidering the transitive and re�exive closure (v∗) of the transitive relation (v )
as the nontransitive one, the theorem holds.

1. Let LN = LT ,D = v∗,and ΓN = ΓT . Then, C (`) = {`′ |`′D `} =
{`′ |`′v∗`}, and according to the de�nitions 1 and 3, ∀`.

(
M1

C (`)
= N

M2 ⇐⇒ M1
`=T M2

)
.

2. Considering De�nitions 3 and 4,(
∀` ∈ LN .∀M1,M2.

(
M1

C (`)
= N M2 ∧ 〈c,M1〉−→∗〈stop,M ′

1〉 ∧

〈c,M2〉−→∗〈stop,M ′
2〉
)
=⇒ M ′

1
`=N M ′

2

)
⇐⇒(

∀` ∈ LN .∀M1,M2.
(
M1

C (`)
= N M2 ∧ 〈c,M1〉−→∗〈stop,M ′

1〉 ∧
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2. Nontransitive Policies Transpiled

〈c,M2〉−→∗〈stop,M ′
2〉
)

=⇒ M ′
1

C (`)
= N M ′

2

)
, thus the theorem

holds.

Proof of Lemma 1. The transformed program c′ is partitioned into three
sections such that c′ = initc′ ;origc′ ;finalc′ : (1) initial assignments for temp
variables (initc′ ), (2) the original program that variables are renamed to temp
variables (origc′ ), and (3) �nal assignments for sink variables (finalc′ ).

1. The init section only sets the values of xtemp variables and each assign-
ment is in the form of xtemp := x for all x ∈Varc . We also know that
∀x ∈Varc .xsink < FV (initc′ ). Using the rule (Write) of the semantics
by the number of elements in Varc , we can conclude that the init sec-
tion always terminates and ∀M .∃!M ′ .〈initc′ ,M 〉−→|Varc |〈stop,M ′〉 ∧
∀x ∈Varc .M

′(xtemp) = M ′(x ) = M (x )∧M ′(xsink ) = M (xsink ).

2. The program c and the origc′ section are identical up
to α-renaming of variables x ∈Varc with xtemp , and
∀x ∈Varc .x < FV (origc′ ) ∧ xsink < FV (origc′ ). Thus, we
write ∀M1,M2.∀x ∈Varc .M1(x ) = M2(x ) = M2(xtemp) =⇒
∀n ∈N.〈c,M1〉−→n〈c1,M ′

1〉 ∧ 〈origc′ ,M2〉−→n〈c2,M ′
2〉 ∧ M ′

1(x ) =
M ′

2(xtemp)∧M ′
2(x ) = M2(x ) = M1(x )∧M2(xsink ) = M ′

2(xsink ).

3. The �nal section includes assignments from the value of xtemp

variables to xsink variables where assignments are in the
form of xsink := xtemp for all x ∈Varc . We also know that
∀x ∈Varc .x < FV (finalc′ ). Similar to the init section, by apply-
ing the rule (Write) by the number of elements in Varc , we can write
∀M .∃!M ′ .〈finalc′ ,M 〉−→|Varc |〈stop,M ′〉 ∧ ∀x ∈Varc .M

′(xsink ) =
M ′(xtemp) = M (xtemp)∧M ′(x ) = M (x ).

4. If we use the semantic rule (Seq-I) for the sequence of these three sec-
tions and follow the aforementioned statements, we can conclude that
Lemma 1 holds.

Proof of Lemma 2. Using Lemma 1, we can establish a correspondence be-
tween the two security de�nitions. We have 〈c,M 〉−→∗〈stop,M ′〉 ⇐⇒
〈Canonical (c),M 〉−→∗〈stop,M ′′〉, which means the termination behavior
stays the same. Then given that ∀x ∈ Varc .M

′(x ) = M ′′(xtemp) =
M ′′(xsink )∧M (x ) = M ′′(x ), the lemma is proven.

Proof of Lemma 3. For simplicity, we write c′ = Canonical (c). We know
that ∀x .

(
P (x ) ⇐⇒ Q(x )

)
=⇒

(
∀x .P (x ) ⇐⇒ ∀x .Q(x )

)
. So to prove the
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lemma, we show the correctness of the following statement:
∀M1,M2.〈c′ ,M1〉−→∗〈stop,M ′

1〉 ∧ 〈c′ ,M2〉−→∗〈stop,M ′
2〉 =⇒(

∀` ∈ LN .
(
M1

C (`)
= N M2 =⇒ M ′

1
`=N M ′

2

)
⇐⇒ ∀`′ ∈ LT .

(
M1

`′=T

M2 =⇒ M ′
1
`′=T M ′

2

))
.

If the execution of the program c′ for (at least) one of the two arbitrary
memories M1 and M2 does not terminate, then the premise in both secu-
rity de�nitions does not hold, thus the lemma holds. Assuming the program
is terminating for both memories, we prove the statement as follows:

1. Left to right:

(a) Let IN = {` ∈ LN |M1
C (`)
= N M2} be the set of levels in LN

that the two memories are indistinguishable for the set
of labels can �ow to them. Then, we have IN ∈ LT ∧
IT = {`′ ∈ LT |M1

`′=T M2} = {`′ ∈ LT |` ∈ IN ∧ `′ ∈ ℘(C (`))} =
℘(IN ) based on De�nition 1.

(b) Using Lemma 1, we can conclude that ∀` ∈ IN .∀x ∈
Varc .ΓN (x ) = ` =⇒

(
∃xsink ∈ Varc′ .ΓT (xsink ) = C (`) ∧

M ′
1(xsink ) = M ′

2(xsink )
)
∧

(
∃x ∈ Varc′ .ΓT (x ) = {`} ∧M ′

1(x ) =

M ′
2(x )

)
∧

(
∃xtemp ∈ Varc′ .ΓT (xtemp) = LN ∧ M ′

1(xtemp) =

M ′
2(xtemp)

)
∧ ` ∈ IT ∧C (`) ∈ IT .

(c) Therefore, ∀` ∈ IN .M
′
1

`=N M ′
2 ⇐⇒ ∀`′ ∈ IT .M

′
1
`′=T M ′

2.

Hence, ∀` ∈ LN .
(
M1

C (`)
= N M2 =⇒ M ′

1
`=N M ′

2

)
=⇒ ∀`′ ∈

LT .
(
M1

`′=T M2 =⇒ M ′
1
`′=T M ′

2

)
.

2. Right to left:

(a) Let IT = {`′ ∈ LT |M1
`′=T M2} and IN = {` ∈ LN |M1

C (`)
= N

M2} = {` ∈ LN |C (`) ∈ IT }.

(b) According to Lemma 1, we have ∀`′ ∈ IT .∃` ∈ LN .
(
`′ =

{`} =⇒ ℘(C (`)) ⊆ IT ∧ ∀x ∈ Varc .ΓN (x ) = ` =⇒(
∃xsink ∈ Varc′ .ΓT (xsink ) = C (`) ∧ M ′

1(xsink ) = M ′
2(xsink )

)
∧(

∃x ∈ Varc′ .ΓT (x ) = `′ ∧ M ′
1(x ) = M ′

2(x )
)
∧

(
∃xtemp ∈

Varc′ .ΓT (xtemp) = LN ∧M ′
1(xtemp) = M ′

2(xtemp)
))

.
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(c) Thus, ∀`′ ∈ IT .M
′
1

`′=T M ′
2 ⇐⇒ ∀` ∈ IN .M

′
1

`=N M ′
2.

Hence, ∀`′ ∈ LT .
(
M1

`′=T M2 =⇒ M ′
1
`′=T M ′

2

)
=⇒ ∀` ∈

LN .
(
M1

C (`)
= N M2 =⇒ M ′

1
`=N M ′

2

)
.

Proof of Theorem 2. By using Lemma 2 and Lemma 3.

Proof of Theorem 3. To show soundness of the type system, we prove the
following statement: pc `Γ {c′}Γ ′ =⇒

(
∀` ∈ LT .∀M1,M2.

(
M1

`=Γ ,T M2 ∧

〈c′ ,M1〉−→∗〈stop,M ′
1〉 ∧ 〈c′ ,M2〉−→∗〈stop,M ′

2〉
)

=⇒ M ′
1
`=Γ ′ ,T M ′

2

)
∧ ∀x ∈

Varsink .Γ
′(x ) = Γ (x ), where c′ = Canonical (c) and M1

`=Γ ,T M2 ⇐⇒ ∀x ∈
Varc′ .Γ (x)v ` =⇒ M1(x) = M2(x). The �rst part of the statement denotes
the de�nition of security in the �ow-sensitive style and the second part of
the statement ensures the �ow-insensitivity of sink variables.

The �rst three rules determine the security level of expression e , which
is the join of security levels associated with free variables of the expression.

By induction on the typing derivation and the structure of c′ , we
have ∀M .∀x ∈Varc′ .

(
〈c′ ,M 〉−→∗〈stop,M ′〉 ∧ pc `Γ {c′}Γ ′ ∧ pc@Γ ′(x )

)
=⇒

M (x ) = M ′(x ), where pc@Γ ′(x ) implies that no assignment to x occurs in c′ .
Note that in the assignment to sink variables (rule TT-Write-II), the memory
gets updated in a secure way since pc t Γ (x ′)vΓ (x ) =⇒ pcvΓ (x ).

It can also be easily proven by induction on the typing derivation that
pc `Γ {c′}Γ ′ ∧ pc′vpc =⇒ pc′ `Γ {c′}Γ ′ .

By induction on the typing derivation and the structure of c′ ,
we show that pc `Γ {c′}Γ ′ =⇒ ∀` ∈ LT .∀M1,M2.

(
M1

`=Γ ,T M2 ∧

〈c′ ,M1〉−→∗〈stop,M ′
1〉 ∧ 〈c′ ,M2〉−→∗〈stop,M ′

2〉
)

=⇒ M ′
1
`=Γ ′ ,T M ′

2. We dis-
cuss the cases as follows:

• Case (TT-Skip): We directly can write pc `Γ {skip}Γ =⇒
∀` ∈ LT .∀M1,M2.

(
M1

`=Γ ,T M2 ∧ 〈skip,M1〉−→∗〈stop,M1〉 ∧

〈skip,M2〉−→∗〈stop,M2〉
)
=⇒ M1

`=Γ ,T M2.
• Case (TT-Write-I): The conclusion part is pc `Γ {x := e}Γ [x 7→ pc t t],

thus Γ and Γ ′ only might di�er in x ; and similarly for M1 and M2. The
statement holds for this case because pcvΓ ′(x ) = pc t t .

• Case (TT-Write-II): The condition pc t Γ (x ′)vΓ (x ) checks if the as-
signment is permitted with regard to the transitive policy; it cap-
tures implicit (pc) and explicit (Γ (x ′)) �ows to the variable x . Thus,
we have pc `Γ {x := x ′}Γ =⇒ ∀` ∈ LT .∀M1,M2.

(
M1

`=Γ ,T M2 ∧
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〈x := x ′ ,M1〉−→∗〈stop,M ′
1〉∧〈x := x ′ ,M2〉−→∗〈stop,M ′

2〉
)
=⇒ M ′

1
`=Γ ,T

M ′
2.

• Case (TT-If): Based on the induction hypothesis, pc t t `Γ {cb}Γ ′ =⇒
TNITI (T ,cb) for b = true , false . Since pcvpctt , the statement holds
for this case.

• Case (TT-While): Based on the induction hypothesis, we have
pc t t `Γ {cbody }Γ =⇒ TNITI (T ,cbody ), and pcvpc t t , thus
pc `Γ {c}Γ =⇒ TNITI (T ,c) for c = while e do cbody .

• Case (TT-Seq): Using the induction hypothesis, we have
pc `Γ {c1}Γ ′ =⇒ TNITI (T ,c1) ∧ pc `Γ ′{c2}Γ ′′ =⇒ TNITI (T ,c2).
Therefore, pc `Γ {c1;c2}Γ ′′ =⇒ TNITI (T ,c1;c2).

• Case (TT-Sub): Based on the induction hypothesis, pc1 `Γ1{c}Γ ′1 =⇒
TNITI (T ,c). Considering the conditions pc2vpc1 ∧ Γ2vΓ1 ∧ Γ ′1vΓ

′
2,

we can conclude pc2 `Γ2{c}Γ ′2 =⇒ TNITI (T ,c).
We also prove the second part which requires the levels of sink variables

remain unmodi�ed through the program. There is no typing rule that up-
dates the level of sink variables of the program, and the subsumption rule
(rule TT-Sub) obviously guarantees the property. Therefore, by induction on
the typing derivation, we have ∀x ∈Varsink .Γ

′(x ) = Γ (x ).

Proof of Theorem 4. By induction on the derivation of expressions, we
prove the type for expression e is the union of the security levels (i.e., the
collected information �ows) of free variables of the expression, formally
Γ `e : t =⇒ t =

⋃
x∈FV (e) Γ (x ):

• Case (Value): We label values as empty set since they are visible for
all levels and no free variable exists.

• Case (NT-Read): The type of variable x (i.e., Γ (x )) is the set of labels
that might a�ect the value of the variable x in the program. It must
capture all the possible �ows to the variable, including the label of
itself.

• Case (NT-Operation): Based on the induction hypothesis, it is easy to
conclude that t1 ∪ t2 =

⋃
x∈FV (e1⊕e2) Γ (x ).

• Case (NT-Sub-I): The subtyping rule for expressions shows adding
more security labels to the type of e keeps the expression well-typed.

By induction on the typing derivation and the structure of c, we prove
the theorem as follows:

• Case (NT-Skip): It is easy to see that P ,Γ ,pc `skip : t =⇒
NTNITI (N ,skip) for anyN .

• Case (NT-Write): This rule checks the explicit and implicit �ows to
the variable x have been collected in Γ (x ) and permitted by D rela-
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tion. The type t is the union set of Γ (x ) (all collected information
�ows) and the type of e (the explicit �ows). Considering pc (implicit
�ows) of the assignment, the premise investigates the presence of all
labels in t∪pc in the collected �ows to the variable x (Γ (x )), and guar-
antees that those are permitted according to the nontransitive �ow.
Hence, ∀M1,M2.M1

C (t∪pc)
= N M2 ∧ 〈x := e ,M1〉−→∗〈stop,M ′

1〉 ∧ 〈x :=

e ,M2〉−→∗〈stop,M ′
1〉 =⇒ M ′

1
t∪pc
= N M ′

2. Thus, NTNITI (N ,x := e)
holds.

• Case (NT-If): Based on the subtyping rule, we write
P ,Γ ,pc ∪ t1 `ctrue : t2 =⇒ P ,Γ ,pc `ctrue : t2, and similarly for
cfalse . Aggregating the labels in t1 and t2 and using the induction
hypothesis prove the theorem statement for if commands.

• Case (NT-While) Similar to the previous case, if cbody is well-typed
under pc ∪ t1, according to the induction hypothesis, this case is also
proved.

• Case (NT-Seq): Using the induction hypothesis, c1;c2 has type t1 ∪ t2
and NTNI (N ,c1;c2) holds.

• Case (NT-Sub-II): The induction hypothesis shows NTNI (N ,c) holds
if c is well-typed, for example, has type t1 under pc1. If we extend
the type with more security labels under a smaller pc, the command c
remains well-typed and satis�es NTNI (N ,c).

Proof of Theorem 5. First, we start with demonstrating that
P ,Γ1,pc `c : t =⇒ P ′ ,Γ ′1,pc `c′ : t , where c′ = Canonical (c) and we
extend the typing context Γ1 to Γ ′1 and the labeling function P to P ′ by
adding temp and sink variables with the same mappings for any variable x of
the program, i.e., ∀x ∈ Varc .P ′(x ) = P ′(xtemp) = P ′(xsink ) = P (x )∧ Γ ′1(x ) =
Γ ′1(xtemp) = Γ ′1(xsink ) = Γ1(x ).

As discussed in Lemma 1, the program is partitioned in three parts:
c′ = initc′ ;origc′ ;finalc′ . By induction on the derivation of initc′ and us-
ing the two rules (NT-Write) and (NT-Seq), we have P ′ ,Γ ′1,pc ` initc′ : t
because statements are assignments of the form xtemp := x and Γ ′1(x ) =
Γ ′1(xtemp). Also, since P ,Γ1,pc `c : t holds, then ∀` ∈ Γ1(x )DP (x ), and thus
∀` ∈ Γ ′1(xtemp).`DP ′(xtemp).

We know that c and orig(c′) are identical up to α-renaming of variables
x ∈Varc with xtemp . Therefore, P ,Γ1,pc `c : t =⇒ P ′ ,Γ ′1,pc `c′ : t because
Γ1(x ) = Γ ′1(xtemp), P (x ) = P (xtemp), and x ,xsink < FV (c′).

At the �nal section, statements are the form of xsink := xtemp . Similar to
the init section, because Γ ′1(xtemp) = Γ ′1(xsink ) and∀` ∈ Γ ′1(xsink ).`DP ′(xsink ),
we can write P ′ ,Γ ′1,pc `finalc′ : t . Applying the rule (NT-Seq) two times, we
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3.C. Proofs

conclude P ′ ,Γ ′1,pc ` initc′ ;origc′ ;finalc′ : t .
Then, we prove P ′ ,Γ ′1,pc `c′ : t =⇒ pc `Γ2{c′}Γ3 where c′ =

Canonical (c). Remember that in the transitive type system LT = ℘(LN ),
v = ⊆, and t = ∪. To connect the typing contexts together meaningfully,
the following constraints must be considered ∀x ∈Varc :

• Γ3(xtemp) v Γ ′1(xtemp): The �nal type of xtemp contains the set of labels
in the last assignment that �ow to the variable in the program c′ , due
to �ow-sensitivity of the transitive type system, while Γ ′1(xtemp) is the
predicted set of all information �ows to the variable xtemp .

• Γ2(x ) = {P (x )},Γ2(xtemp) = LN ,Γ2(xsink ) = C (P (x )): The conditions
are based on the labeling function presented in De�nition 5 to adjust
the nontransitive mapping to the transitive one.

• Γ3(x ) = Γ2(x ),Γ3(xsink ) = Γ2(xsink ): As shown in Figure 9, if the pro-
gram is well-typed, the types for variables remain untouched except
for Vartemp .

There is a one-to-one correspondence between typing rules for expres-
sions, which yields the union set of Γ (x ) for free variables FV (e) as the type
of the expression e . Thus, Γ ′1 `e : t =⇒ Γ2 `e : t ′ .

By induction on the nontransitive typing derivation P ′ ,Γ ′1,pc `c′ : t and
the structure of c′ :

• Case (NT-Skip): Based on the rule (TT-Skip), pc `Γ2{c′}Γ2 holds.
• Case (NT-Write): We separate this case for two subcases according to

the variable on the left side of the assignment:
– If x ∈ Vartemp , since Γ ′1 `e : t =⇒ Γ2 `e : t ′ , based on the rule

(TT-Write-I), we write pc `Γ2{c′}Γ2[x 7→ pc t t ′].
– If x ∈ Varsink , we know that e = xtemp is the only case in pro-

gram c′ at the finalc′ section. Because Γ3(xtemp) ⊆ Γ ′1(xtemp)
and ∀` ∈ Γ ′1(xtemp) ∪ pc. ` ∈ Γ ′1(xsink ) ∧ `DP ′(xsink ) =⇒ pc t
Γ3(xtemp)vC (P ′(xsink )) =⇒ pc t Γ3(xtemp)vΓ3(xsink ). Hence,
based on the rule (TT-Write-II), pc `Γ3{x := e}Γ3.

• Case (NT-If): Using the induction hypothesis and Γ ′1 `e : t =⇒
Γ2 `e : t ′ , the statement pc `Γ2{c′}Γ3 holds for this case with respect
to the rule (TT-If).

• Case (NT-While): Similar to the case (NT-If), and according to the rule
(TT-While).

• Case (NT-Seq): Using the induction hypothesis, pc `Γ2{c1}Γ3 and
pc `Γ3{c2}Γ4, then pc `Γ2{c1;c2}Γ4 by using the rule (TT-Seq).

• Case (NT-Sub-II): Using the induction hypothesis, we write
pc1 `Γ2{c}Γ ′2. Since pc2vpc1, Γ3vΓ2, Γ ′2vΓ

′
3 and in combination

with the rule (NT-Sub-I), pc2 `Γ3{c}Γ ′3 holds.
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Proof of Theorem 6. Simliar to the proof of Theorem 1, by considering the
transitive and re�exive closure (v∗) of the transitive relation (v ) as the non-
transitive one, the theorem holds.

1. Let LN = LT ,D = v∗,and ΓN = ΓT . Then, C (`) =
{`′ |`′D `} = {`′ |`′v∗`}, and according to the de�nitions 8 and 12,
∀`.

(
I1

C (`)
= N I2 ⇐⇒ I1

`=T I2
)
, and based on the de�ntions 7 and 11,

∀`.
(
O1

C (`)
= N O2 ⇐⇒ O1

`=T O2

)
.

2. Considering De�nitions 11 and 14,(
∀` ∈ LN .∀M .∀I1,I2.

(
I1

C (`)
= N I2 ∧ 〈c,M ,I1,∅〉{O1

)
=⇒

∃O2.〈c,M ,I2,∅〉{O2 ∧ O1
`=N O2

)
⇐⇒(

∀` ∈ LN .∀M .∀I1,I2.
(
I1

C (`)
= N I2 ∧ 〈c,M ,I1,∅〉{O1

)
=⇒

∃O2.〈c,M ,I2,∅〉{O2 ∧O1
C (`)
= N O2

)
, thus the theorem holds.

Proof of Lemma 4. It is clear that the transformation only modi�es the la-
bels in the input and output commands of the given program, thus the be-
havior of the rest of the program stays una�ected. The changes in the labels
of the input commands can be formulated as ∀`.I (`) = I ′({`}), where I is the
input for the program c and I ′ is the input for the program c′ .

By induction on the semantic rules shown in Figure 24, it is proven that
c′ progresses the same as c with the di�erence that outputs are sent to the
channel C (`) in lieu of `. Therefore, we formulate it for the two outputs
O and O ′ of programs c and c′ respectively as O ′ = O [v` 7→ vC (`)], which
means the only di�erence between the output sequences O and O ′ are the
labels of output values; ones with the label ` in O are recorded at the same
index in O ′ with the label C (`).

Proof of Theorem 7. Let c′ = Transform(c), LT = ℘(LN ), v =⊆ and ∀x ∈
Varc .ΓT (x) = {ΓN (x)}.

1. We have ∀` ∈ LN .∀I1,I2.I1
C (`)
= N I2 ⇐⇒ ∀`′ ∈ LT .∀I ′1,I

′
2.I
′
1
`′=T I ′2

because of De�nitions 8 and 12. Based on Lemma 4, we also know
∀` ∈ LN .I (`) = I ′({`}).

2. According to De�nitions 10 and 14, and the se-
mantic relation presented in Lemma 4, the
statement ∀M .

(
∀` ∈ LN .∀I1,I2.

(
I1

C (`)
= N I2 ∧
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〈c,M ,I1,∅〉{O1

)
=⇒∃O2.〈c,M ,I2,∅〉{O2 ∧ O1

`=N O2

)
⇐⇒(

∀`′ ∈ LT .∀I ′1,I
′
2.
(
I ′1

`′=T I ′2 ∧ 〈c′ ,M ,I ′1,∅〉{O ′1
)

=⇒

∃O ′2.〈c′ ,M ,I ′2,∅〉 { O ′2 ∧ O ′1
`′=T O ′2

)
holds if O1

`=N O2 ⇐⇒

O ′1
`′=T O ′2.

3. As stated in Lemma 4, we conclude O ′1 = O1 [v` 7→ vC (`)] ∧ O ′2 =

O2 [v` 7→ vC (`)]. Hence, O1
`=N O2 ⇐⇒ O ′1

`′=T O ′2 and conse-
quently, the theorem holds.

Proof of Theorem 8. We prove the following statement by induc-
tion on the typing derivation and the structure of c′ = Transform(c):
pc `Γ {c′}Γ ′ =⇒ ∀` ∈ LT .∀M .∀I1,I2.I1

`=T I2 ∧ 〈c,M ,I1,∅〉{O1 =⇒
∃O2.〈c,M ,I2,∅〉{O2 ∧ O1

`=T O2.
The �rst three rules calculate the security level for expression e , by join-

ing the security levels of its free variables.
The commands that update the security level of a variable are as-

signment (rules IO-TT-Write) and input (rule IO-TT-Input). There-
fore, by induction on the typing derivation and the structure of c′ , we
can write ∀I .∀M .∀x ∈Varc′ .

(
〈c′ ,M ,I ,∅〉−→∗〈c′′ ,M ′ ,I ′ ,O〉∧pc `Γ {c′}Γ ′∧

pc@Γ ′(x )
)
=⇒ M (x ) = M ′(x ), where pc@Γ ′(x ) implies that no input or as-

signment to x occurs in c′ . Note that for input commands (rule TT-Write-II),
the memory gets updated in a secure way since pcvΓ ′(x ).

It can be easily proven by induction on the typing derivation that
pc `Γ {c}Γ ′ ∧ pc′vpc =⇒ pc′ `Γ {c}Γ ′ .

Next, we investigate each case as follows:
• Case (IO-TT-Skip): It is easy to see that pc `Γ {skip}Γ =⇒
∀` ∈ LT .∀M .∀I1,I2.I1

`=T I2 ∧ 〈skip,M ,I1,O〉{O =⇒
〈skip,M ,I2,O〉{O ∧ O

`=T O .
• Case (IO-TT-Write): For this case, we can write pc `Γ {x := e}Γ ′ =⇒
∀` ∈ LT .∀M .∀I1,I2.I1

`=T I2 ∧ 〈x := e ,M ,I1,O〉{O =⇒
〈x := e ,M ,I2,O〉{O ∧ O

`=T O . Note that the security label of the
variable after the execution of the command carries both implicit (pc)
and explicit (t ) dependencies.

• Case (IO-TT-If): Based on the induction hypothesis,
pc t t `Γ {cb}Γ ′ =⇒ TNIPI (T ,cb) for b = true , false . Since
pcvpc t t , the statement holds for this case.
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• Case (IO-TT-While): Based on the induction hypothesis, we have
pc t t `Γ {cbody }Γ =⇒ TNIPI (T ,cbody ), and pcvpc t t , thus
pc `Γ {c}Γ =⇒ TNIPI (T ,c) for c = while e do cbody .

• Case (IO-TT-Seq): Using the induction hypothesis, we have
pc `Γ {c1}Γ ′ =⇒ TNIPI (T ,c1) ∧ pc `Γ ′{c2}Γ ′′ =⇒ TNIPI (T ,c2).
Therefore, pc `Γ {c1;c2}Γ ′′ =⇒ TNIPI (T ,c1;c2).

• Case (IO-TT-Input): Taking the condition pcv ` into account, the type
system only accepts input commands in the same context as the label
` or lower. Leaving the premise empty makes the type system un-
sound, due to not considering implicit �ow (pc) to inputs from the
level `. Hence, pc `Γ {input(x , `′)}Γ ′ =⇒ ∀` ∈ LT .∀M .∀I1,I2.I1

`=T
I2∧〈input(x , `′),M ,I1,O〉{O =⇒ 〈input(x , `′),M ,I2,O〉{O ∧
O

`=T O .
• Case (IO-TT-Output): The condition pc t Γ (x )v ` controls if the

output is permitted with regard to the transitive policy; the premise
monitors implicit �ow (pc) and explicit �ow (Γ (x )) to the output
channel at the level `. Thus, we have pc `Γ {output(x , `′)}Γ =⇒
∀` ∈ LT .∀M .∀I1,I2.I1

`=T I2 ∧ 〈output(x , `′),M ,I1,O〉{ O1 =⇒
〈output(x , `′),M ,I2,O〉 { O2 ∧ O1

`=T O2 since O1 = O2 =
O .M (x )`′ .

• Case (IO-TT-Sub): pc1 `Γ1{c}Γ ′1 =⇒ TNIPI (T ,c). Consider-
ing the conditions pc2vpc1 ∧ Γ2vΓ1 ∧ Γ ′1vΓ

′
2, we can conclude

pc2 `Γ2{c}Γ ′2 =⇒ TNIPI (T ,c).

Proof of Lemma 5. For simplicity, we write c′ = Canonical (c). We know
that ∀x .

(
P (x ) ⇐⇒ Q(x )

)
=⇒

(
∀x .P (x ) ⇐⇒ ∀x .Q(x )

)
. So to prove the

lemma, we show the correctness of the following statement:
∀M1,M2.〈c′ ,M1〉−→∗〈stop,M ′

1〉 ∧ 〈c′ ,M2〉−→∗〈stop,M ′
2〉 =⇒(

∀` ∈ LN .
(
M1

C (`)
= N M2 =⇒ M ′

1
`=N M ′

2

)
⇐⇒∀`′ ∈ LT .

(
M1

`′=T M2 =⇒

M ′
1
`′=T M ′

2

))
.

If the execution of the program c′ for (at least) one of the two arbitrary
memories M1 and M2 does not terminate, then the premise in both secu-
rity de�nitions does not hold, thus the lemma holds. Assuming the program
is terminating for both memories, we prove the statement as follows:

1. Left to right:

(a) Let IN = {` ∈ LN |M1
C (`)
= N M2} be the set of levels in LN that

the two memories are indistinguishable for the set of labels can
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�ow to them. Then, we have IT = {`′ ∈ LT |M1
`′=T M2} =

{`snk , `src ∈ LT |` ∈ IN }. Based on De�nition 1, M1
`snk= T M2 =⇒

M1
`src= T M2.

(b) Using Lemma 1, we can conclude that ∀` ∈ IN .∀x ∈
Varc .ΓN (x ) = ` =⇒

(
∃xsink ∈ Varc′ .ΓT (xsink ) = `snk ∧

M ′
1(xsink ) = M ′

2(xsink )
)
∧

(
∃x ∈ Varc′ .ΓT (x ) = `src ∧M ′

1(x ) =

M ′
2(x )

)
∧

(
∃xtemp ∈ Varc′ .ΓT (xtemp) = > ∧ M ′

1(xtemp) =

M ′
2(xtemp)

)
∧ `src , `snk ∈ IT .

(c) Therefore, ∀` ∈ IN .M
′
1

`=N M ′
2 ⇐⇒ ∀`′ ∈ IT .M

′
1
`′=T M ′

2.

Hence, ∀` ∈ LN .
(
M1

C (`)
= N M2 =⇒ M ′

1
`=N M ′

2

)
=⇒ ∀`′ ∈

LT .
(
M1

`′=T M2 =⇒ M ′
1
`′=T M ′

2

)
.

2. Right to left:

(a) Let IT = {`′ ∈ LT |M1
`′=T M2} and IN = {` ∈ LN |M1

C (`)
= N

M2} = {` ∈ LN |`snk ∈ IT }.

(b) According to Lemma 1, we have ∀`′ ∈ IT .∃` ∈ LN .
(
`snk , `src ∈

IT ∧ ∀x ∈ Varc .ΓN (x ) = ` =⇒
(
∃xsink ∈ Varc′ .ΓT (xsink ) =

`snk ∧ M ′
1(xsink ) = M ′

2(xsink )
)
∧

(
∃x ∈ Varc′ .ΓT (x ) = `src ∧

M ′
1(x ) = M ′

2(x )
)
∧
(
∃xtemp ∈Varc′ .ΓT (xtemp) =>∧M ′

1(xtemp) =

M ′
2(xtemp)

))
.

(c) Thus, ∀`′ ∈ IT .M
′
1

`′=T M ′
2 ⇐⇒ ∀` ∈ IN .M

′
1

`=N M ′
2.

Hence, ∀`′ ∈ LT .
(
M1

`′=T M2 =⇒ M ′
1
`′=T M ′

2

)
=⇒ ∀` ∈

LN .
(
M1

C (`)
= N M2 =⇒ M ′

1
`=N M ′

2

)
.

Proof of Theorem 9. By using Lemma 2 and Lemma 5.

Proof of Theorem 10. Similar to the proof of Theorem 3.

Proof of Theorem 11. We start with showing that
P ,Γ1,pc `c : t =⇒ P ′ ,Γ ′1,pc `c′ : t , where c′ = Canonical (c) and we
extend the typing context Γ1 to Γ ′1 and the labeling function P to P ′ by
adding temp and sink variables with the same mappings for any variable x of
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the program, i.e., ∀x ∈ Varc .P ′(x ) = P ′(xtemp) = P ′(xsink ) = P (x )∧ Γ ′1(x ) =
Γ ′1(xtemp) = Γ ′1(xsink ) = Γ1(x ).

As discussed in Lemma 1, the program is partitioned in three parts:
c′ = initc′ ;origc′ ;finalc′ . By induction on the derivation of initc′ and us-
ing the two rules (NT-Write) and (NT-Seq), we have P ′ ,Γ ′1,pc ` initc′ : t
because statements are assignments of the form xtemp := x and Γ ′1(x ) =
Γ ′1(xtemp). Also, since P ,Γ1,pc `c : t holds, then ∀` ∈ Γ1(x )DP (x ), and thus
∀` ∈ Γ ′1(xtemp).`DP ′(xtemp).

We know that c and orig(c′) are identical up to α-renaming of variables
x ∈Varc with xtemp . Therefore, P ,Γ1,pc `c : t =⇒ P ′ ,Γ ′1,pc `c′ : t because
Γ1(x ) = Γ ′1(xtemp), P (x ) = P (xtemp), and x ,xsink < FV (c′).

At the �nal section, statements are the form of xsink := xtemp . Similar to
the init section, because Γ ′1(xtemp) = Γ ′1(xsink ) and∀` ∈ Γ ′1(xsink ).`DP ′(xsink ),
we can write P ′ ,Γ ′1,pc `finalc′ : t . Applying the rule (NT-Seq) two times, we
conclude P ′ ,Γ ′1,pc ` initc′ ;origc′ ;finalc′ : t .

Then, we prove P ′ ,Γ ′1,pc `c′ : t =⇒ pc `Γ2{c′}Γ3 where
c′ = Canonical (c). Remember that in the transitive type system
LT ⊇ {`src , `snk |` ∈ LN } ∪ {>,⊥} and ∀`, `′ ∈ LN .`D `

′ ⇐⇒ `srcv `′snk
such that 〈LT , v〉 is a lattice. To connect the typing contexts together
meaningfully, the following constraints must be considered ∀x ∈Varc :

• Γ3(xtemp)v
⊔

`∈Γ1(x )
`src : The �nal type of xtemp is the join of the set of

source labels in the last assignment that �ow to the variable in the
program c′ , due to �ow-sensitivity of the transitive type system, while
Γ ′1(xtemp) is the predicted set of all information �ows to the variable
xtemp . Thus, Γ3(xtemp) should be lower than or equal to the join of
corresponding source labels of Γ ′1(xtemp) =

⊔
`∈Γ1(x )

`src .

• P (x ) = ` =⇒ Γ2(x ) = `src ,Γ2(xtemp) = >,Γ2(xsink ) = `snk : The condi-
tions are based on the labeling function presented in De�nition 15 to
adjust the nontransitive mapping to the transitive one.

• Γ3(x ) = Γ2(x ),Γ3(xsink ) = Γ2(xsink ): As shown in Figure 9, if the pro-
gram is well-typed, the types for variables remain untouched except
for Vartemp .

There is a one-to-one correspondence between typing rules for expres-
sions, which yields the join of Γ (x ) for free variables FV (e) as the type of
the expression e . Thus, Γ ′1 `e : t =⇒ Γ2 `e : t ′ .

By induction on the nontransitive typing derivation P ′ ,Γ ′1,pc `c′ : t and
the structure of c′ :

• Case (NT-Skip): Based on the rule (TT-Skip), pc `Γ2{c′}Γ2 holds.
• Case (NT-Write): We separate this case for two subcases according to
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the variable on the left side of the assignment:
– If x ∈ Vartemp , since Γ ′1 `e : t =⇒ Γ2 `e : t ′ , based on the rule

(TT-Write-I), we write pc `Γ2{c′}Γ2[x 7→ pc t t ′].
– If x ∈ Varsink , we know that e = xtemp is the only case in pro-

gram c′ at the finalc′ section. Because if P ′(xsink ) = `′ , then ∀` ∈
Γ ′1(xtemp)∪pc. ` ∈ Γ ′1(xsink )∧`D `′ =⇒ pctΓ3(xtemp)v `′snk =⇒
pctΓ3(xtemp)vΓ3(xsink ). Hence, based on the rule (TT-Write-II),
pc `Γ3{x := e}Γ3.

• Case (NT-If): Using the induction hypothesis and Γ ′1 `e : t =⇒
Γ2 `e : t ′ , the statement pc `Γ2{c′}Γ3 holds for this case with respect
to the rule (TT-If).

• Case (NT-While): Similar to the case (NT-If), and according to the rule
(TT-While).

• Case (NT-Seq): Using the induction hypothesis, pc `Γ2{c1}Γ3 and
pc `Γ3{c2}Γ4, then pc `Γ2{c1;c2}Γ4 by using the rule (TT-Seq).

• Case (NT-Sub-II): Using the induction hypothesis, we write
pc1 `Γ2{c}Γ ′2. Since pc2vpc1, Γ3vΓ2, Γ ′2vΓ

′
3 and in combination

with the rule (NT-Sub-I), pc2 `Γ3{c}Γ ′3 holds.

Proof of Lemma 6. Clearly, the transformation only modi�es the labels in
the input and output commands of the given program, thus the behavior
of the rest of the program stays una�ected. The changes in the labels of the
input commands can be formulated as∀`.I (`) = I ′(`src), where I is the input
for the program c and I ′ is the input for the program c′ .

By induction on the semantic rules shown in Figure 24, it is proven that
c′ progresses the same as c with the di�erence that outputs are sent to the
channel `snk instead of `. Therefore, we formulate it for the two outputs
O and O ′ of programs c and c′ respectively as O ′ = O [v` 7→ v`snk ]. Thus
the only di�erence between the output sequences O and O ′ are the labels of
output values; ones with the label ` in O are recorded at the same index in
O ′ with the label `snk .

Proof of Theorem 12. Let c′ = Transform(c), LT ⊇ {`src , `snk |` ∈ LN } ∪
{>,⊥} and ∀`, `′ ∈ LN .`D `

′ ⇐⇒ `srcv `′snk (D is re�exive) such that
〈LT , v〉 is a lattice, and ∀x ∈Varc . ΓN (x) = ` =⇒ ΓT (x) = `src .

1. We have ∀` ∈ LN .∀I1,I2.I1
C (`)
= N I2 ⇐⇒ ∀`′ ∈ LT .∀I ′1,I

′
2.I
′
1
`′=T I ′2

because of De�nitions 8 and 12. Based on Lemma 6, we also know
∀` ∈ LN .I (`) = I ′(`src).

2. According to De�nitions 10 and 14, and the se-
mantic relation presented in Lemma 6, the
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statement ∀M .
(
∀` ∈ LN .∀I1,I2.

(
I1

C (`)
= N I2 ∧

〈c,M ,I1,∅〉{O1

)
=⇒∃O2.〈c,M ,I2,∅〉{O2 ∧ O1

`=N O2

)
⇐⇒(

∀`′ ∈ LT .∀I ′1,I
′
2.
(
I ′1

`′=T I ′2 ∧ 〈c′ ,M ,I ′1,∅〉{O ′1
)

=⇒

∃O ′2.〈c′ ,M ,I ′2,∅〉 { O ′2 ∧ O ′1
`′=T O ′2

)
holds if O1

`=N O2 ⇐⇒

O ′1
`′=T O ′2.

3. As stated in Lemma 6, we conclude O ′1 = O1 [v` 7→ v`snk ] ∧ O ′2 =

O2 [v` 7→ v`snk ]. Hence, O1
`=N O2 ⇐⇒ O ′1

`′=T O ′2 and conse-
quently, the theorem holds.
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