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Abstract—Medical imaging is advancing at a rapid pace,
revolutionizing medicine. Automated skin lesion segmentation
is vital for early skin cancer diagnosis, yet segmenting lesions
in dermoscopic images presents considerable challenges. Despite
recent good performance, CNN-based algorithms are unable
to effectively learn explicit global and long-range semantic
information because of the fundamental locality of convolution
operations. The first medical image segmentation framework,
TransUNet, was presented employing Vision Transformer as
a strong encoder in a U-shaped architecture, in light of the
growing interest in self-attention mechanisms in computer vision
and their potential to address this issue. Using hierarchical
vision transformers’ multi-scale features, CASCADE is a novel
attention-based decoder. The components of CASCADE are a
convolutional attention module that improves the local and long-
range context by suppressing background information and an
attention gate that combines features. Using TransUNet’s En-
coder and CASCADE as the Decoder, the TransCASCADE model
efficiently makes use of the global context stored by Transformers
and detailed, high-resolution spatial information from CNN
features. In this study, we utilized a novel optimizer called Lion
to train our model, which improved memory efficiency, reduced
complexity, and required fewer hyperparameters. Employing
Lion resulted in superior performance compared to the base
models. Experimental results demonstrate the high efficiency of
the proposed method on PH2 dataset.
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I. INTRODUCTION

One of the most significant stages of pre-diagnostic, in-
treatment, and post-treatment evaluations for a variety of dis-
eases is the segmentation of medical images. It can be viewed
as a prediction problem that generates segmentation maps of
lesions. The development and growing application of medical
imaging techniques (MRI, PET, CT scan, X-ray, endoscopy,
and many more) have made it important to have tools for the
automatic extraction of this data. Deep learning techniques
have become more practical for these jobs nowadays thanks
to advancements in hardware, and deep learning forms the
basis of the most widely used approaches [1].

Many medical image segmentation research projects have
extensively used convolutional neural networks (CNNs). Due
to its ability to generate high-resolution segmentation maps,
U-Net has shown extreme performance in the segmentation
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of medical images [2]. Various alternative architectures, in-
cluding U-Net++, U-Net+, and 3D U-Net, have demonstrated
outstanding performance in medical image segmentation, due
to the efficient encoder-decoder architecture of U-Net [1].

Despite the powerful representation capabilities and rea-
sonable performance of convolutional neural network-based
methods, these architectures have limitations in learning long-
range dependencies between image pixels. While convolu-
tional neural networks have demonstrated excellent perfor-
mance, learning meaningful context across large distances is
hindered by the intrinsic locality of convolutional processes.
This implies that these networks won’t perform well if images
contain structural information with notable variations in tex-
ture and shape. Some architectures use attention mechanisms
in the architecture to improve feature maps for more accu-
rate medical image segmentation to overcome this limitation.
Extracting Long-range dependencies is still challenging for
attention-based methods, despite their increased performance.

The latest advances in vision transformers have tackled
limitations related to long-range dependencies, especially in
medical image segmentation. Transformers rely on attention
mechanisms, initially introduced for sequence-to-sequence
prediction in natural language processing. Transformers can
learn long-range dependencies by using self-attention to iden-
tify correlations between all of the input tokens. Vision trans-
formers split an image into non-overlapping patches and feed
them into the transformer unit together with positional embed-
dings, deriving inspiration from the success of transformers
in natural language processing. The TransUNet architecture,
which increases the extraction of global semantic information
and spatial features, is an example of how vision transformers
are applied. This architecture includes a cascaded decoder
to capture local pixel-wise relationships and a transformer
encoder to extract long-range dependencies [4]. In light of
these challenges, we enhance the base model by utilizing a
novel attention-based decoder known as “CASCADE” [1]. A
hierarchical representation derived from vision transformers
is used by CASCADE. Using attention gates and attention
pooling modules, this decoder learns the semantic and spatial
relationships between pixels to improve feature maps.

Skin cancer is one of the most general cancer types in
over the world and Skin lesion segmentation has a critical
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role in the early diagnosis of skin cancer by computer-aided
systems. However, automatic segmentation of skin lesions in
dermoscopic images is a challenging task due to difficulties
including artifacts (hairs, gel bubbles, ruler markers), indistinct
boundaries, low contrast and varying sizes and shapes of the
lesion images [5].

In this paper, we leverage the CASCADE decoder architec-
ture to improve upon the TransUNet model, which is used as
our base model. We introduce a new loss function as one of
the modifications we make to the model. Better output was
obtained by optimizing the model and adding the Cascade
decoder.

This paper is organized as follows: Section II provides an
overview of some related works on skin lesion segmentation
and in general medical image segmentation based on CNNs
and Vision Transformers. Section III explains the dataset used.
The proposed method is described in Section IV. Section V ex-
plains the experimental results. Finally, Section VI concludes
the paper.

II. RELATED WORK

In this section, we intend to briefly discuss related works
conducted in this field. We first explain traditional and deep
learning-based methods of segmenting skin lesions in images.
Next, we provide an overview of the most widely used
convolutional neural network-based methods for segmenting
medical images. In conclusion, we examine the latest use of
vision transformers in the domain of image segmentation.

A. Skin Lesion Segmentation

Before the advent of deep learning, thresholding, and
active contour models—two of the most well-established
techniques—were frequently the foundation of skin lesion
segmentation approaches. Even if the era of deep learning
has changed, traditional feature extraction techniques have
gradually given way to deep neural networks. This shift is
characterized by a growing preference for end-to-end methods
to effectively address the complexities associated with skin
image segmentation [6].

B. Medical Image Segmentation based on CNNs

In medical image segmentation, convolutional neural net-
works—particularly the U-Net architecture with its encoder-
decoder structure and several versions—have shown outstand-
ing performance. Owing to the U-shaped structure’s ease of
use and efficient operation, new kinds of U-Net-like methods
are always being developed in the area. Before concatenation,
for instance, U-Net++ [7] adds a set of densely interconnected
skip connections to fill in semantic gaps between the encoder
and decoder feature maps. Attention U-Net [8] offers attention
gates, a revolutionary innovation that allows the model to focus
on targets of different sizes and forms. Last but not least,
U2-net [9] uses a two-level layered structure with the U-Net
structure applied at each level, utilizing Residual U-blocks
(RSU). By combining receptive fields of various sizes, this
architecture can collect more meaningful information.

C. Vision Transformer

Inspired by the success of Transformer in various Natural
Language Processing tasks, more and more Transformer-
based methods appear in Computer Vision tasks. Among the
recent vision transformers, ViT [10] is the first attempt that
proves pure Transformer-based architecture can achieve SOTA
performance on image recognition when pre-training on large
datasets such as ImageNet-22K and JFT-300M. Transformer-
specific teacher-student strategy is introduced by DeiT [11].
It includes the process of knowledge transfer and is based
on a distillation identifier. Through the attention mechanism,
the student learns from the teacher model. This study shows
that the DeiT architecture requires significantly less data and
computational resources to perform as well as the ViT, even
when it comes to image classification. It has demonstrated
strong performance after being successfully trained on a
smaller dataset, such as ImageNet-1k.

ViT’s static and non-multiscale feature maps are one of its
challenges, as they result in a notable loss of spatial infor-
mation. The PVT [12] architecture was designed to address
this issue by including a multiscale mode into the transformer
architecture for the first time. The main difference between
this type of architecture and convolutional neural networks
is the incorporation of global attention throughout the entire
process. The addition of a new attention mechanism called
spatial reduction attention, which lowers computational cost
based on a specified reduction factor, is another important
advantage that PVT has over ViT.

III. DATASET

In this section, our objective is to provide a brief overview of
the PH2 dataset employed in the scope of skin lesion segmen-
tation. The increasing incidence of melanoma has recently pro-
moted the development of computer-aided diagnosis systems
for the classification of dermoscopic images. The PH2 dataset
was built up through a joint research collaboration between the
Universidade do Porto, T “ecnico Lisboa, and the Dermatology
Service of Hospital Pedro Hispano in Matosinhos, Portugal.
This dataset contains a total of 200 dermoscopic images with
a resolution of 768x560 pixels, containing 80 common nevi,
80 atypical nevi, and 40 melanomas [14]. In Figure 1, we
observe some samples of the dataset.

The dataset is entirely labeled with masks and for training
the models, we have divided all of them into an 80-20 ratio.
The masks are binary images indicating which pixels in the
original image belong to the skin lesion and which do not.

IV. PROPOSED METHOD

In this section, we will explain our proposed model. This
model will be introduced as TransCascade-Li. As depicted in
Figure 3, TransUNet is used as our model’s encoder, and the
CASCADE architecture employs upconv blocks for feature
upsampling, attention gates for cascaded feature integration,
and CAM blocks for enhancing feature maps. It initially
uses attention gates to mix the upsampled features from
the preceding decoder block with skip-connection features
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Fig. 1. An illustrative collection of images from PH2 dataset [14]
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for multi-scale feature aggregation. It then concatenates the
upsampled features from the previous layer with the combined
features. After that, it groups pixels with related characteristics
in various image areas and reduces the influence of features
that aren’t significant by processing the concatenated features
using CAM blocks. The final segmentation map is created
by combining the four anticipated feature maps from the
various scales that are obtained after feeding the output of
each CAM block into a prediction head. In the following, We
initially introduce the TransUNet and then, we describe the
CASCADE.

A. TransUNet

The TransUNet model, a reliable substitute for medical
image segmentation includes a transformer and a U-shaped
convolutional network as part of its architecture. It can serve
as an effective alternative for medical image segmentation.
To extract global semantic information, the transformer first
encodes the image patches that were taken from the feature
map as a sequence input. However, to facilitate accurate
localization, the decoder upsamples the encoded features.

Now that we are acquainted with the basic model in brief,
let’s see how it is structured: Assume that we have an image
x € REXWXC with dimensions H x W and C channels.
Our objective is to forecast a mask image that has H x W
dimensions. The most common approach involves directly
training a convolutional neural network, like a U-Net, where
the high-level features of the images are first fully represented
by an encoder and then fully reconstructed using a decoder.
But in contrast to current methods, we use the self-attention
mechanism present in transformers in the encoder’s design [2].

The architecture of the TransUNet can be seen in Figure
2. As evident, after obtaining the encodings from the trans-
former, z; € R 5z *D , we need to upsample them to obtain
the mask. Here, Y € RHXWXK represents the number of
classes. To restore the spatial order, the resized vector of the

. .. HW
encoded feature, initially from R P2 xD , must be reshaped to
R% x L xD )

B. CASCADE

The capacity of current transformer-based models to learn
local information is restricted. Previous methods, which were
unsuccessful in evaluations, tried to get around this restriction
by embedding convolutional layers—which are effective at

Embedded Sequence
b,

Transformer Layer

[me | fn=12)

. -
Transformer Layer ¥ =
[ 1 (@56, Wa, W) >
Hidden Feature | —— - Feature Concatenation
7,

(n_patch, D) ©, W1s, wie) (512, W16, Wrie)
(@ ®)

MSA 7 K J N
(+) %‘“‘"‘ "“'1 l' 14 ) d
Linear Projection i (64, W2, W2)
Layer Z
" (0 -

Fig. 2. The artichetecture of TransUNet [2]

extracting spatial information—into the encoder or decoder
units of the transformer. Convolution layers have recently
been added to transformers to overcome this restriction in
models like SegFormer, UFormer, and PVTv2. These struc-
tures still have difficulties even if they can learn some local
(spatial) correlations between pixels. To address these issues,
a novel decoder called Cascaded Attention Decoder (CAS-
CADE) makes use of hierarchical representations of visual
transformers. CASCADE integrates features with attention
gates (AGs) and convolution attention modules (CAMs) to
improve performance through skip connections. CASCADE
captures both global and local (spatial) correlations between
pixels because it uses attention-based convolution modules to
aggregate multi-stage features and hierarchical transformers as
the primary network.

Studies show that models incorporating CASCADE de-
coders significantly outperform models that are transformer-
based, convolutional neural network-based, or a mix of these.
When used with different hierarchical backbone networks,
the suggested decoder is adaptable and easy to use. This
architecture uses both a pyramid transformer and a hybrid
CNN-transformer encoder (instead of only CNN) to provide
adequate generalization and processing capacity for multi-
scale feature analysis in medical image segmentation. PVTv2
continuously encodes spatial information using convolution
operations as opposed to the traditional transformer patch em-
bedding module. TransUNet concurrently captures the global
and spatial relationships between features by layering a trans-
former on top of CNN. The second architecture, known as
TransCASCADE, is used in this study.

The CAM block in CASCADE uses attention modules to
enhance feature maps. Convolutional blocks, channel attention,
and spatial attention are some of these modules. Channel atten-
tion selects what features to emphasize, while spatial attention
informs where to focus within a feature map. Enhancing the
features produced by channel and spatial attention is the final
stage in the CAM process [1].

Section e of Figure 3 is an illustration of the channel
attention. Both average pooling and max pooling procedures
are used on the input feature map’s spatial dimension to
compute this attention. The output of each operation is then
fed independently into a I1x1 convolutional layer that has
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Fig. 3. The artichetecture of TransCASCADE [1]

the same number of channels. The outputs are fed into a
1x1 convolutional layer with % channels after via a ReLU
activation function. After element-wise summing, the outputs
of the feature vectors are fused, and the resultant vector is
then subjected to a sigmoid function.

Channel focus is followed by spatial attention, as seen
in Figure 3, section f. Thus, the channel attention’s output
becomes the input for the spatial attention, which applies the
max and average pooling operations on the input feature map’s
channel dimension. These two vectors are then concatenated,
and the outcome is sent via an extra layer normalization and a
7x7 convolutional layer. The resultant vector is then subjected
to a sigmoid function.

V. EXPERIMENTS

In this section, we introduce our conducted experiments.
First, we present the performance with the original hyperpa-
rameters. In addition, we investigated the performance using
different loss functions, learning rates, and optimizers. We
implemented the proposed model using PyTorch and all ex-
periments were performed on Google Colab platform using a
Tesla T4 GPU with 12 GB memory.

A. Parameters

We use a batch size of 16 and train each model maximum
of 150 epochs. We use the input resolution and patch size
P as 224x224 and 16, respectively. Additionally, we apply a
learning rate and weight decay of le-4 to optimize the training
process.

B. Evaluation Metrics

To compare the proposed new model with the baseline
model, we utilized evaluation metrics, including the Dice
and IoU indices, which are associated with four values: false
negatives (FN), false positives (FP), true negatives (TN), and
true positives (TP).

) 2x TP
Dice = o b T FPT FN M
TP
ToU = 2
U= TP FPTFN )

C. Loss Function

In our proposed method loss function is defined as a
weighted linear combination of multiple loss functions like
Cross-Entropy, Dice, and IoU. The final performance heavily
depends on selecting the correct (relative) weights for these
loss functions.

Although the assignment of weights to each loss function
depends on the specific application of the model, and using
uniform weights is not always ideal, we experimented with
both different and uniform coefficients for training our model.
However, in both cases, we observed no improvement in
performance. Therefore, we decided to use equal coefficients
as the baseline.

loss = aLdice + 6Lc€ + ’}/Liou (3)

As we can see in Table I, the idea of adding the IoU loss
function does not lead to improvement, and in this step, the
base model without it performs better. Therefore, the IoU loss
function will not be used further so we set the value of « equal
to zero.

TABLE I
RESULTS OF USING DIFFERENT LOSS FUNCTIONS

Base Model Proposed Model
(TransUNet) (TransCascade-Li)
dataset | metric | w/o IoU | w/ IoU | w/o IoU w/ IoU
PH2 DSC* 0.94 0.94 0.96 0.95
IoUP 0.90 0.90 0.92 0.92
2Dice metric
bIoU metric

D. Lion Optimizer

Although academics still employ traditional optimizers like
AdamW and SGD, some methods have been put out to
automatically find more effective optimization techniques. An
evolutionary machine learning method was used to find the
“Lion” optimization algorithm, which is used to train neural
networks, as reported by a research team from Google and the
University of California in a recent study [16].

Using three to ten times less learning rate than Adam,
the Lion optimizer is more memory-efficient. Its algorithm
is also less complex and has fewer hyperparameters. Using
Lion, researchers trained some models, including a vision
transformer. We tried to integrate the recently released Lion
Optimizer into our new model using these descriptions. The
findings of the experiment are reported. Table II shows that
using Lion in place of the optimizer improved both the original
and the new models. Consequently, we will employ Lion as
the main optimizer in the new model.



TABLE II
RESULTS OF USING DIFFERENT OPTIMIZERS

Base Model Proposed Model

(TransUNet) (TransCascade-Li)

dataset | metric | w/ SGD | w/ Lion | w/ SGD w/ Lion
PH2 DSC 0.94 0.96 0.96 0.97
10U 0.90 0.92 0.92 0.94

It can be said that in the PH2 dataset, our model achieves
an average of 0.97 in the Dice metric and 0.94 in the IoU
metric, which are 3.2% and 4.4% higher than the base model,
respectively. The qualitative result compared to the ground
truth can be observed in Figure 4
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Fig. 4. The segmentation predictions of our method on PH2 dataset

E. Implement Final System

As a final system, we decided to create a web application
using the Gradio library in Python. Gradio is an open-source
Python library that facilitates the rapid development of user
interfaces for machine learning models, providing a simple
and attractive interface accessible through any browser. An
advantage of Gradio is its ability to interact with models in
web programs developed in Jupyter Notebooks or Colab. As
seen in Figure 5, we observe the system output.

DermoSegNet: Skin Lesion Segmentation System

Fig. 5. The figure of final system

VI. CONCLUSION

In this paper, we introduced a novel structure for skin
lesions and we demonstrated that using the proposed structure
has a great effect on improving deep learning performance
in skin lesion segmentation tasks. Additionally, experiments
demonstrate that CASCADE effectively enhances transformer
features.
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